
Introduction to
Numerical Computing

INTRODUCTION

Numerical C1ay an indispensable role in solving real life
inathematica physical and engineering problems. They have been in
use for centuries even before digital computers appeared on the scne
Great mathematicians like Gauss, Newton, Lagrange. Fourier and many
others in the eighteenth and nineteenth centuries developed numerical
techniques which are still widely used. The advent of digital computers
has, however, enhanced the speed and accuracy of numerical compu-
tations.

What is numerical computing? It is important to understand the answer
to this ftindamental question before we proceed further. Numericalcomputing is ail approacl i for solving complex inathernatjcaj

sfmpleit	
problemsufngJV	 hmetj operations. Thc ãproach involves

fo!nulati ii of maLhcjnutjcj models of physical situations that can be
solved with aHthrnetjc operations\rtrequjres development, analysis and
use Ofalgorithms -

Numerical computations invariably involve a large number of
arithmetic calculations and, therefore, require fast and efficient computing
devices. The microelectronics revolution and the subsequent development
of high power, low cost personal computers have had a profound impact
on the application of numerical computing methods to solve scientific
problems.

The traditional numerical computing methods usually deal with the
following topics;

1. finding roots of equations

2 Numerical Methods

2. solving systems of linear algebraic equations
3. interpolation and regression analysis
4. numerical integration
5. numerical differentiation
6. solution of differential equations
7. boundary value problems
8. solution of matrix problems

In this book we will discuss some of the popular methods available in
each of these-areas,

NUMERICDATA

Numerical computing may involve two types of data, namely, discrete
data and continuous dnta. Data that are obtained by counting are called
discrete data. Examples of discrete data are the total number of items in
a box, or the total number of people participating in a race.

Data that are obtained through measurement are called continuous
data. Examples of continu,us data are the speed of a vehicle as given by
a speedometer, or temperature of a patient as measured by a
thermometer.

--qZ^ ANALOG COMPUTiNG

Analog refers to the princip1e_oLsohti g aprubinm-b tP wbIh

operates in a way analogous to the problenc For example, the electronic
circuits in an analog- computer act analogously to the problem to be
solved.nalog computing is based on inputs that. vary continuously,
such as rent, voltage or temperature .5he earliest computers were
analog and functioned on the basis ofdlectrical voltages. Calculations
were performed by adding, subtracting, multiplying and dividing voltages.
Analog computers are fast, but their accuracy is limited by the precision
with which the physical quantities can be read.

Many real life measurable quantities are analog in nature: time, tem-
perature, pressure, and speed, for instance. Analog methods are pre-
ferred when these quantities have to he represented in a calculation. An
example of application of analog computers is a machine used in a postal
department to convert the weight of a package into the cost of postage
needed for mailing.

The basic requirement in the application of analog computers is the
writing down of differential equations describing the physical system of
interest. Given the differential equations, the analog result may be
obtained either by direct method, in which equivalent electrical circuits
are directly used to simulate the time variations of the dependent
variables of the physical system, or the functional method, in which
electronic circuits perform the mathematical operations indicated by the
terms of the differential equation.

Introduction to Numerical Computing

DIGITAL COMPUTING

A digital computer is a computing device that operates on inputs which
are discrete in nature. The input data are numbers (or digits) that may
represent numerals, letters, or other special symbols. Just as a digital
clock directly counts the seconds and minutes in an hour, a digital
computer counts discrete data values to compute the results.

Today's digital computers can cope with the analog information, but
they have to convert it into digital form. They do this by measuring the
value of analog quantity at regular intervals and converting that
measurement into a number of electrical pulses corresponding to that
measurement. In an analog watch, for example, time and hands on the
watch face change continuously; a digital watch, however, converts the
passage of time into tiny intervals, marked by the numbers changing on
the dial.

Digital computers are more accurate than analog computers. Analog
computers may be accurate to within 0.1 per cent of the correct value,
whereas digital computers can obtain whatever degree of accuracy is
required by choosing the correct number of decimal places. They are
designed to read, store, manage, and output specific units like numbers,
letters, or punctuation marks. Digital computers are widely used for
many different applications and are often called general purpose
computers.

"	 51OCESSOF NUMERICAL COMPUTING

As''aed earlier, numericaI computing involves formulation of
mathematical models of physical problems that can be solved using basic
arithmetic operations. The process of numerical computing can be roughly

ivided into the following four phases which are illustrated in Fig. 1.1:
1. formulation of a mathematical model
2. construction of an appropriate numerical method
3. implementation of the method to obtain a solution
4. validation of the solution
The fairnidation of a suitable mathematical model is critical to the

solution of the probleio A mathematical model can be broadly defined as
a formulation of certain mathematical equation that expresses the
essential features of a physical system or process. Models may range
from a simple algebraic equation to a complex set of differential equations.
Figure 1.2 shows various types of mathematical equations that might
result while fhrmulating mathematical models of physical processes.

The formulation of a mathematical model begins with a statement of
the problem and the associated factors to be considered, The factors may
concern the balance of forces and other laws of conservation in physics.

4 Numricd Methods

t
IC

CL
CL

(TfTIIH
	

c0

0
0
a
0)C
a.
E
0

LU
	

0

0
0

il	 U---

Aj

IL

0

0

1)

E

IntroductIor to Numericol Computing

A!)
cr

j N 0

0

fi

C
0
C
0
0
w

----1 i

0

CT
w

iz

0
0

E

0
E
0

C
'I)
0

O

Numerical Methods

Real life problems have many uncertainties and unknowns. It might,
therefore, be necessary to make certain assumptions for approximating
and to include only those features of the problem that are considered
critical to the final solution. An oversimplified model may have only
limited usefulness. The model may be enhanced later, if necessary. The.
model refinement may make the solution procedure more difficult. We
must always maintain the balance of enhancement of the model and
accuracy of the solution required.

Once a mathematical model is available, our first step would be to try
to obtain an explicit analytical solution. In most cases, ihe mathematical
models may not be amenable to analytical solutions or they may not be
solved efficiently using analytical techniques. In such cases, we huve to
construct appropriate numerical methods to solve mathematical rnodels
As mentioned earlier, a numerical method is a computational technique
which involves only a finite number of basic arithmetic operations.

For a given problem, there might be several alternative numerical
methods. We must consider different factors or trade-offs before selecting
a particular method—such as type of equation, t ype of computer available,
accuracy, speed of execution, and programming and maintenance efforts
required.

Modelling is the process of translating a physical problem into a
mathematical problem. The Process involves

1. making a number of sirnplifying assumptions
2. identification of important variables
3. postulation of relationships between the variables
This book is mainly concerned with the solution of mathematical models

using numerical techniques.

a mathematical model for predicting the population growth of

Assumptions:
Birth and death rates are proportional to population and time interval.
Parameters:

P(t) —population at time t

AP —Increase in population in time interval At

Then,

= births in Al deaths in At

= C 1 Pt) At - CP(t) At

(C 1 - C2) P(t) At

Growth rate - -CP(t)
At

Introduction to Numerical computing 2

Taking the limits Ai - 0, we get,

dp
= C P(t)

dt

Solution of this differential equation is

P(t) = P0

where P0 is the population at time 1 0.

The population growth depends oil 	 growth constant C = C1 - c2 . The

population will be stable if C1 = C9.

The third phase of the numerical computing process is the
implementation of the method selected. This phase is concerned with
the following three tasks

1. design of an algorithm
2. writing of a program
3. executing it on a computer to obtain the results

Once we are able to obtain the results, the next step is the validation of
the process. Validation means the verification of the results to see that it
is within the desired limits of accuracy. If it is not, then we must go back
and check each of the following:

1. mathematical model itself
2. numerical method selected
3. computational algorithm used to implement the method
This may mean modification of the model, selection of an alternate

numerical method or improving the algorithm (or a combination of them).
Once a modification is introduced, the cycle begins again. Figure 1.3
illustrates how the numerical computing cycle moves from the real world
to mathematical world and back.

Real world	 Mathematical world

FYsIeal Pwemj Mathematical
-1joh0 or

Validaion of model	 Son

Fig. 1.3 Another way of looking at the computing process

Numerfcui

OF NUMERICAL COMPUTING
i'1'tinjcJ methods exhibit certain computational characteristics duringtheir implementation It is important to consider these characteristics
while choosing a particular method for implementation The
characteristics that are critical to the success of implementation are:accuracy, rate of convergence, numerical stability, and efficiency.

Accuracy

Every method of numerical computing introduce,- errors. They may be
either due to using an approximation in place of an exact mathematical
procedure (known as truncation errors) or due to inexact representation
and manipulation of numbers in the computer (known as rowufofferj.ors)
These errors affect the accuracy of the results. The results we obtain
must be sufficiently accurate to serve the purpose for which the
mathematical model was built. Choice of a method is, therefore, very
much dependent on the particular problem. The general nature of these
e 	 will he discussed in detail in Chapter 4.

of Convergence,"

Many numerical methods are based on the idea of an
This process involves generation of a sequence of approximations with
the hope that the process will converge to the required solution. Certain
methods converge faster than others. Some methods may not converge
at all. It is, therefore, important to test for convergence before a method
is used. Rapid convergence takes less execution time on the computer.
There are several techniques for accelerating the rate of convergence of
certain methods. The concepts of convergence and divergence are
discussed in Chapter 4. They are also discussed in various places where
specific methods are analysed for convergence.

4mericai Stability

Another problem introduced by some numerical computing methods is
that of numerical instability. Errors introduced into a computation, from
whatever source, propagate in different ways. In some cases, these errors
tend to grow exponentially, with disastrous computational results. A
computing process that exhibits such exponential error growth is said to
be numerically unstable. We must choose methods that are not only fast
but also stable.

Numerical instability may also arise due to ill-conditioned problems.
There are many problems which are inherently sensitive to round off
errors and other uncertainties Thus, we must distinguish between sen-
sitivity of methods and sensitivity irihereht in problems.

When the problem is ill-conditioned, there is nothing we can do to
make a method to become numerically stable,

Introduction to Numerical Computing

One more consideration in choosirg a numerical method for solution of a
mathematical model is efficiency. It means the amount of effort required
by both human and computer to implement the method. A method that
requires less of computing time and less of programming effort and yet
achieves the desired accuracy is always preferred.

COMPUTATIONAL ENVIRONMENT

The last phase of the numerical computing process, namely the
implementation phase, requires resources such as computer hardware,
operating system and other systems software, language compilers, actual
application programs and other software tools o manipulate data and
provide output in a desired form.

The computer hardware may range from a small personal computer
to a large super computer depending on the nature and size of the
problem. A program may not always produce the same results on two
different types of computers due to difference in their round off errors.

Appropriate operating systems and compilers play an important role
in developing portable programs. UNIX and MS-DOS have become
popular operating systems for scientific computing. FORTRAN language
has dominated the scientific computing field for the last four decades
and it is expected to continue its predominant role for some more years.
It has been continuously modified and extended to support the ever
changing requirements of software engineering. The likely strong
competitor for FORTRAN in the near future will be C and C++ languages
which contain some unique features and powerful control structures.
Portability is another strong point of these languages.

NEW TRENDS IN NUMERICAL COMPUTING

In recent years, the increasing power of computer hardware has affected
the approach of numerical computing in several ways. It has forced
scientists and engineers to search for algorithms that are computati0flay
fast and efficient. An important new trend is the construction of
algorithms to take advantage of specialised computer hardware such as

vector computers and parallel computers. Another trend is the use of
sophisticated interactive graphics, in which the user can view the results
graphically and advise the computer, graphically, on how to proceed

further.
One important development which is likely to have an increasing

impact on scientific computing is symbolic computation. Symbolic

computation systems would enable us to add, multiply and divide
polynomials or rational expressions the same way we would do using
pencil and paper. They can also solve certain mathematical problems

iQ Numencol Methods

without rounding off errors. Symbolic computation is expected to play an
increasing role in scientific computation.

Object-oriented numerical computing is gaining importance due to
the popularity of languages like C++ and Java. They incorporate concepts
such as encapsulation, inheritance, polymorphism and operator
overloading. They support the idea that program units should interact
with one another only through clearly defined interfaces. They also enable
the extension (or reuse) of the existing code without modifying it,

MATHEMATICAL BACKGROUND

This 1)00k assumes that the readers have some mathematical background.
They require basic knowledge of algebra, functions, matrices, and integral
and differential calculus.

SUMMARY

In this chapter, we have introduced the concept of numerical computing
and discussed the steps involved in solving a physical problem using
numerical methods. We also discussed the characteristics of numerical
computing and computing resources required for implementing a
numerical method.

Key Terms

Accu,'acy

Algorithm
Analog computer
C
C++
Continuous data
Digital computer
Discrete data
Efficiency
FORTRAN
General purpose computers
Ill-conditioned problems

Iterative process
Mathematical model
Numerical computing
Numerical method
Numerical stability
Parallel computers
Rate of convergence
Round off error
Symbolic computation
Truncation error
Validation
Vector computer

I. What is Numerical Computing?
2. Distinguish between analog computing and digital computing.

\ 'I.-Describe, with the help of a block diagram, the process of numeri-
cal computing.

Introduction to Numerical Computing]j,

4. Newton's second law of motion states that the time rate of change
of momentum of a body is equal to the resultant force acting on it,
Using this law, formulate a mathematical model to determine the
terminal velocity of a free falling body near the earth's surface.

5. The Newton's law of cooling states that the rate of heat from a
liquid is proportional to the difference in temperatures between the
liquid and the surroundings. Formulate a mathematical model to
govern this law.

6. When a boat moves through water, the retarding force is proportional
to the square of the velocity. Formulate a differential equation in
terms of velocity given the mass n and the drag coefficient k.-? State the four characteristics of numerical computing.

8. What is accuracy? How is it affected during the process of numerical
computing?

.Wh.at is convergence? how is it important in numerical computing?
What do you mean by numerical instability?

11. Distinguish between sensitivity of methods and sensitivity of
problems.

12. Describe resources required for implementing a numerical computing
process.

Affib

Introduction to
Computers and
Computing Concepts

INTRODUCTION

Chapter 1, we discussed that numerical computing requires two
important tools, namely, mathematical methods and computers. Most
numerical methods cannot be solved without the help of computers
Therefore, a background knowledge of computers and computing concepts

Will enhance the understanding of implementation of numerical
computing solutions. This chapter provides some basic information on

computing or -ironment and problem solving approach using computers.
The spate of innovations and inventions in computer technology during

the last two decades has led to the development of a variety of personal
computers. They are so versatile that they have become indispensable to
engineers, scientists, business executives, managers, administrators,
accountants, teachers and students- They have strengthened humankind's
powers in numerical computations and information processing.

Modern computers possess certain characteristics and abilities pecu-

liar to them. They can
1. perform complex and repetitive calculations rapidly and accurately

2. store large amounts of data and information for subsequent

manipulations
3. hold a program of a model which can he explored in many different

ways
4. make decisions
5. provide information to the user

Introduction to Computers and Computing Concepts i

. automatically correct or modify certain parameters of a system
under control

7. draw and print graphs
. converse with users interactively

\Dngineers and scientists make use of the high-speed computing
ca ability of computers to solve complex mathematical models and design
problems. Many calculations that were previously beyond contemplation
have now become possible. But for computers, many of the technological
achievements, such as landing on the moon, would not have been possible.

Computers have helped automation of many industrial and business
systems. They are used extensively in manufacturing and processing
industries, power distribution systems, airline reservation systems,
transportation systems, banking systems, and so on. Computer-aided
design (CAD) and computer-aided manufacture (CAM) are among the
most popular industrial applications today.

Modelling and simulation is another area where computers are
increasingly used. This has greatly accelerated research in such areas as
physical and social sciences, medicine, astronomy and meteorology.

Business and commercial organisations need to store and maintain
voluminous records and use them for various purposes such as inventory
control, sales analysis, payroll accounting, resources scheduling and
generation of management. reports. Computers can store and maintain
files and can sort, merge or update them as and when necessary.

The ability of computers to store large amounts of data has led to
their application in libraries, documentation centres, employment
exchanges, police departments, hospitals and other similar establishments.
Computers are used in international games such as the Olympics to
keep track of events and provide timely and reliable information and
documentation to all concerned.

Since computers can bank a variety of information and converse with
the users, they are being used as resources in teaching and learning at
all levels of education and training. This process is known as computer-

assisted learning (CAL). Here, learners can communicate directly with a
computer in a conversational mode. Using this mode, a learner can learn
a topic in his own time and pace.

Computers are also used to manage the learning processes. This is
called computer-managed learning (CML). Computers can store students'
responses, evaluate their performance and then direct them to the next
appropriate learning unit.

The areas of computer applications are too numerous to mention.
Computers have become an integral part of our everyday life. They
continue to grow and open new horizons of discovery and application
such as the electronic office, electronic commerce, and the home computer
centre.

The microelectronics revolution has placed enormous computational
power within the reach of every scientist and engineer. However, it

14 Numerical Methods

must be remembered that computers are machines created and managed
by humans. A computer has no brain of its own. Anything it does is the
result of human instructions. It is an obedient slave which carries out
the master's orders as long as it can understand them, no matter whether
they are right or wrong. In short, comput ers lack common sense. These
instructions constitute the program or software.

: EVOLUTION OF NUMERICAL COMPUTING AND
COMPUTERS

The use of computing techniques is over 5000 years old. The Babylonians,
Chinese, and Egyptians used numerical methods for the survey of lands
and the collection of taxes as early as 3000 BC. Computing history starts
with the development of a device called the abacus by the Chinese around
this period. This was used for the systematic calculation of arithmetic
operations. Since then the number system has undergone various changes
and has been used in different forms in computing. The most significant
development in computing was the formulation of the decimal number
system in India around 800 AD. Another significant development was
the invention of logarithm by John Napier in 1614, which made computing
simple.

The modern age of mathentatics emerged during the 17th century
when Johannes Kepler and Galileo Galilee deduced the laws for planetary
motion and Sir Isaac Newton formulated the law of gravity. The
subsequent developments in mathematics and other sciences increased
the need for new computing techniques and devices.

The principle of logarithm was later applied to a calculating device
known as the slide rule, which was extensively used till recently. The
first accounting machine was built in France by Blaise Pascal in 1642.
Then came the Leibnitz calculator in 1671 designed by Gottfried Wilhelm
von Leibnitz. These machines progressed in technology and variety and
became the standard calculating machines of the business community.
During the beginning of the 19th century, Joseph Marie Jacquard
invented an automated loom operated by a mechanism controlled by
punched cards.

The orign of the modern computer can be traced back to 1834 AD,
when an English mathematician, Charles Babbage, designed an analytical
engine. This is considered to be the first programmable digital mechanical
computer. However, this kind of machine was not built until 1944, when
Mark I, an electromechanical automatic computer, was developed by
IBM. Subsequently, a series of technological improvements and
innovations wok place and the design of computes underwent continuous
and dramatic changes. Some of the important developments since the
slide rule are given in Table 2.1.

lnttoductiofl to Computers and Computing Concepts 1
Table 2.1 Some developments In computing technology

Device

Slide rule
Pascal calculator, an accounting machine by Blaise Pascal
Leibnita calculator
Punched card loom by Jacquard
Difference engine by Charles Babbage
Analytical engine by Charles Babbage
Punched card machine by Berman Hollerith
Differential analyser by Vannevar Bush
Paper on computational numbers by Alan Turing
I 'ink between symbolic logic and electric circuit by Claude Shanon
Binary adder built by George Stihitz
First general-purpose computer designed by Konrad Zuse
Colossus machine built to crack German secret codes, by the British
First automatic computer, MARK!, designed by Howard Aiken
Critical elements of a computer system outlined by John Von
Neumann
First electronic digital computer, ENIAC, put to operation by
Prosper Eckert and John Mauchly
Transisthr invented by John Bardeen, William Shockley and
Walter Brttaifl
First business computer, UNIVAC, became operational
Second generation computer (using transistors) introduced by
Bell Laboratory
Integrated circuits (ICs) demonstrated by Clair Kilby
First third generation computer using ICs developed
First commercial minicomputer, PDP-8, introduced by Digital
Equipment Corporation
Intel 4004 microprocessor designed by Ted 14off
First fourth generation computer (using microprocessors) built by
Ed Roberts
First personal computer software created by Bill Gates and Paul
Allen
Apple introduced its famous personal computer
IBM PC introduced in the market
Cray supercomputer marketed by Cray Research Company
Optical computer demonstrated

Modem Computers
The era of modern computers began in 1951 when the UNIVAC (Universal
Automatic Computer) became operational at the Bureau of Census in
USA. Since then, computers started appearing in quick succession, each
claiming an improvement over the other. They represented improvements
in speed. memory (storage) systms, input and output devices and
programming techniques. They also showed a continuous reduction in
physical size and cost. The developments in computers are closely
associated with the developments in material technology, particularly
the semiconductor technology.

Year

--f622
1642
1671
1801
1822
1634
1890
1930
1936

1937
1941
1943
1944
1945

1946

1947

1951
1956

1959
1964
1965

1971
1974

1975

1977
1981
1982
1989

16 Nume4cal Methods

Computers devfthped after ENIAC have been classified into the fol-
lowing four generations:

First 6yeneration	 1946- 1955
Second generation	 1956- 1965
Third generation	 1966- 1975
Fourth generation	 1976 - present

You may notice that from 1946, each decade has contributed one
generation of computers.

In the first generation computers vacuum tubes were used. Magnetic
tape drives and magnetic core memories were developed during this
Period. The firstgeneration computers possessed the following drawbacks
as compared to the later models:

1. large in size
2. slow operating speeds
3. restricted computing capacity
4. limited programming capabilities
5. short life span
6. complex maintenance schedules
The second generation computers were marked by the use of a solid-

state device, called the transistor, in the place of vacuum tubes. These
machines were much faster and more reliable than their earlier
counterparts. Further, they occupied less space, required less power,
and produced much less heat.

Research in the field of electronics led to the innovation of the
integrated circuits, now popularly known as IC chips. The use of IC
chips in the place of transistors gave birth to the third generation
computers. They were still more compact, faster and less expensive than
the previous generation.

Along with the third generation computers, newer and faster
equipments were introduced for handling storage and input-output.

Continued efforts towards m inia turisation led to the development of
large-scale integration (LSI) technology. Intel Corporation introduced
LSI chips called microprocessors for building computers. The latest child
of the computer family that uses VLSI chips has been named the fourthgeneration, computer. The fourth generation computers are marked with
an increased user-computer interaction and speed. Table 2.2 gives an
idea of the main features of each generation.

Fifth Generaflon Computers

Japan and many other countries are working on systems that are known
edas knowledge-bn	 or expert systems which will considerably improvethe man-machine interaction. Such systems would integrate the

advancements in both hardware and software technologies and would
facilitate computer-aided problem-solving with the help of organised
information in many specialized areas.

Introduction to Computers and Computing Concepts J

Table 2.2 Computer generations

Generation
Features

First	 Second	 Third	 Fourth

Main component Vacuum tube Transistor	 Integrated	 LSI and VLSI
circuit	 circuit
(IC Chips).

Internal storage Electrostatic Magnetic	 Magnetic	 Semiconductor
(Memory)	 tubes	 core	 core	 memory

Magnetic
drum

External	 Paper Lape	 Magnetic disk Magnetic disk Magnetic disk
storage	 Punched card Magnetic 	 Magnetic tape Magnetic tape
(Auxiliary	 Magnetic tape drum	 Magnetic drum Magnetic drum
memory)	 Magnetic tape Punched card Floppy disk

Paper tape	 Paper tape	 CD rom
Punched card 30,000 to 	 3,00,000 to

Speed of operation 40 to 300	 3,000 to 30,000 3,00,000	 30,00,000
lAdditions/second) thousands	 thousands	 thousands	 thousands

This generation of computers is called the fifth generation, computers.
Although knowledge-based systems are expensive and time-consuming
to build, they are likely to become more popular in the coming years.

TYPES OF COMPUTERS

Computers ma y he classified based on operating principles, size and
capability, and applications.

Principles of Operation
Based an the operating principles, computers can be classified into any
one of the following types: digital computers, analog computers, and
hybrid computers.

Digital computers operate essentially by counting. All quantities are
expressed as discrete digits or numbers. Digital computers are useful for
evaluating arithmetic expressions and for manipulations of data (such
as preparation of hills, ledgers, solution of simultaneous equations, etc.).

Analog computers operate by measuring rather than by counting. The
name, which is derived from the Greek word analog, denotes that the
computer functions by establishing similarities between two quantities
that are usually expressed as voltages or currents. Analog computers
are powerful tools to solve differential equations. Computers which
combine features of both analog and digital types are called hybrid com-
puters.

M Numerical Methods

A majority of the computers used toda y are digital. As their name
suggests, digital computers were originally designed to perform certain
numerical calculations. They gradually replaced almost all mechanical
ca, culating devices. Later, the concept of stored programs enabled them
to 8tore data and instructions and perform certain sequences and
combinations of arithmetic operations automatically. This has led to the
use of digital computers in a variety of applications.

Applications
Modern computers, depending upon their applications, are classified as
special purpose computers or general purpose computers.

Special purpose computers are tailor-made to cater solely to the
requirements of a particular task or application. They incorporate the
instructions needed into the design of internal storage so that they can
perform the given task on a simple command. They, therefore, do not
Possess unnecessary options and cost less.

On the other hand, general purpose computers are designed to meet
the needs of many different applications. In a general purpose computer,
the instructions needed to perform a particular task are not wired
permanently into the internal memory. When one job is over, instructions
for another job can he loaded into the internal memory for processing.
Thus, a general-purpose machine can he used to prepare pay-hills, manage
inventories, print sales reports, and so on.

Size and Capability
Computers are also available in different sizes and with different
cpabilit lea, Broadly, they mar he categorised as microcomputers,
minicomputers, mainframes and supercomputers. The selection of a
particular system primarily depends on the volume of data to he handled
and the speed of the processor.

Microcomputers A microcomputer is the smallest general-purpose
processing system. Functionally, it is similar to any other large system.
Microcomputers are self-contained units and are usually designed for
use by one person at a time. Since microcomputers can be easily linked
to large computers, they form a very important segment of the integrated
information systems.

Minicomputers A minicomputer is a medium-sized computer that is
more costly and powerful than a microcomputer. An important distinction
between a microcomputer and a minicomputer is that the latter is usually
designed to serve multiple users simultaneousl y- A system that supports
multiple users is called in ultiterminal, time-sharing system. Mini-
computers are the popular computing systems amo ig research and
business organisations today.

Introduction to Computers and Computing Concepts Jy

Mainframe computers Computers with large storage capacities and
very high speed of processing (compared to micro or minicomputers)
known as mainframe computers. They support a large number of termi-
nals for use by a variety of users simultaneously. They are also used
the central host computer in distributed data processing systems.

Supercomputers Supercomputers have extremely large storage cap i-..
ties and computing speeds that are many times faster than other com-
puters. While the speed of traditional computers is measured in terms
millions of instructions per second (mips), a supercomputer in rated in
tens of millions of operations per second (mops) (an of rton is made up
of numerous instrueLions). Typically, the sUpeTCOTrLpUter is used for large-
scale numerical problems in scientific and engineering disciplines. These
include applications in electronics, petroleum engineering, weather fe-
casting, structural analysis, chemistry, medicine and physics

Personal computers Personal computers are nothing but micro- com-
puters that are specially designed for personal use of individuals. The
name "personal computer" was coined by HIM when it marketed its first
microcomputer in 1981. Since then, many companies have produced IBM
compatible PCs. During the last lifteen years, the processor chips used
in IBM compatible PCs have undergone dramatic improvements in their
performance characteristics. Table 2.3 shows the characteristics of vari-
ous PC processor chips. Note that today's PCs are far more powerfiil
than the mainframes of just a few years ago.

Table 2.3 Characteristics of microprocessor chips

8088 286	 Peiieiurn Pentium
PC XT PC AT 386	 486	 Pentium Pro	 II

Clock speed 4.77
(megahertz)
Data path	 8
(bits)
Computation 16
size (hits)
Memory-size 640K
(bytes)
Floating point Copro-

cessor
Speed	 0.33-	 250

6-12	 16-33 16-50 66-200 120-200 200+

16-64
m egs
On
chip

(MIPS)
Number of	 29,000 130,000 275,000 1.2 	 8.3	 5.2	 10+
transistors	 million million million million
per chip

16

16

2 megs

Copro-
cessor
1.2

32	 32	 64	 64
16 (SX)
32	 32	 32	 32

4-16	 4-64	 4-64
rnegs megs	 megs
Copro- On	 On
cessor chip	 chip
2,5-6	 20-40 112

64

32

16-64
megs
On
chip
500

Workstations There is a class of computers, known as workstations,
which lie in between minicomputers and microcomputers in terms of

Q Numerical Methods

processing power. A workstation looks like a personal computer but is
specially designed for engineering and graphics applications.

Parallel computers Parallel computer is a relativefy new type of com-
puter that uses a large number of processors. The processors perform
different tasks independently and simultaneously, thus, improving the
speed of execution of complex programs dramatically. Parallel computers
match the speed of supercomputers at a fraction of the cost.

COMPUTING CONCEPTS

A computer, small or big, is basically a device used for processing of data
(numbers) and text (words). It performs essentially the following three
operations in a sequence:

1. receives data	 (and instructions)
2. processes data	 (as per the instructions)
3. outputs result	 (information)
This cycle of operation of a computer is known as the input—process-

output cycle and is shown in Fig. 2.1.

C'arKot

hair	 ProcessutBrown Output FMr. Brown bought a

Office	 for hisoffice

 INFORMATION
DAT Instructions

Fig. 2.1 Input-proc.ess-outputcycle

Raw facts, known as data, are provided to the computer in hits and
pieces. They are encoded in such a way that the computer can understand
them. The computer then processes the data with the help of certain
instructions provided to it, and produces a meaningful and desired out-
put known as informat ion . For example, if the data consists of two
numbers, say, 10 and 15 and the instruction is to add them and print
out the result, then the output information would he the sum of the two
numbers, i.e. 25. A set of instructions designed to perform a particular
sequence of functions is called a computer program.

Processing is nothing but manipulation of data in accordance with
certain procedures to suit the need of the user (or application). The same
basic data can provide several kinds of information depending upon the
type of instructions.

Input is usually through a keyboard (like a typewriter) and output
may be obtained either on a display screen or on a printer. While the
printer produces typed copy on paper (usually known as hard copy), the
screen display (soft copy) allows the user to verify the output before it is
printed.

Introduction to Computers and Computing Concepts 21

A computer often includes an external storage system to store (and
retrieve) data and programme. The popular storage medium is a floppy
disk. Other media, such as hard disks, magnetic tapos and CD ROME
are also used. All these physical components are known as hardware.

COMPUTER ORGANISATION

Although computers differ widely in their details, all of them follow a
basic organisational structure as shown in Fig. 2.2. In order to carry out
the three basic operations, namely, input. process and output a mputer
includes the following hardware components input devices, processing
units, output devices and external storage devices.

Magnetic	 MagneticTap

	

F	 Disc
EXTERNAL STORAGE UNITS

:

1n tit

	

	 Input	 M^e-or^,	 ----Output

diae	 Unit,	 unit _^qWdie)id	

__ rilt

1_

ArithrnelIG

t

Control

ap t j
Data and results flow
Control Instructions to units
Instructions to control unit

FIG. 2.2 Structure of o computer

Input Devices
An input device presents data to the processing unit in machine-read-
able form: Although the keyboard is a common input device for a small
computer, a system may also support one or more of the input devices
given in Table 2.4.

Numerical Methods

Table 2.4 Input devices
S.No.	 Device

1. Optical character
reader (OCR)

2. Magnetic ink character
recogniser (MICR)

3. Mark sense reader
4. Graphics tablet
5. Mouse
6,	 Floppy drive

7.	 Hard disk
(Winchester) drive

S.	 Tape drive

CD ROM drive

Medium of data storage
Special paper document

Special paper document

Special paper or card
Document
Document
Floppy disk

Magnetic disk

Magnetic tape

CD ROM

Remarks

Only input

Only input

Only input
Only input
Only input
Input, output,
storage
Input, output,
storage
Input, output,
storage
Input, storage

Yocessing Units

Processing units receive data and instructions, store them temporarily
and then process the data as per the instructions. The processing units
include: memory unit, arithmetic logic unit, and control unit. All three
units together are known as the central processing unit (CPU).
Memory unit The memory unit holds (stores) all data, instructions and
results temporarily. The memory consists of himclreds of thousands of
cells called 'storage locations', each capable of storing one word of iriforrna-
tion. The memory unit is called by different names, such as storage,
internal storage, primary storage, main memory or simply memory.
Arithmetic logic unit This unit is used to perform all the arithmetic
and logic operations, such as addition, multiplication, comparison, etc.
For example, consider the addition of two numbers A and B. The controlunit will select the number A from its location in the memory and load it
into the arithmetic logic unit. Then it will select the number B and addit to A in the arithmetic unit. The result will then be stored in the
memory or retained in the arithmetic unit for further calculations.
Control unit This unit coordinates the activities of all the other units in
the system. Its main functions are:

I. to control the transfer of data and i nformation between variousunits
2. to initiate appropriate actions by the arithmetic unit
The program provides the basic control i nstructions. Conceptually,

,he control unit fetches instructions from the memory, decodes them,
'nd directs Various Units to Perform the specified tasks.

')utput Devices

)utput devices receive information from the CPU and present it to the
ser in the desired form. Although a printer is the in'st commonly used

Drive spindle
hole

Read/write
slot

on

Write protect
notch

Index hole

introduction to Computers and Computing Concepts

output device, devices such as plotters are also becoming popular- Scw

common output devices are given in Table 2.5.

Table 2.5 Output devices

Device

Printer
Plotter
Visual display unit (Vl)U)
Floppy drive
Disk drive
Tape drive

tlediurn of presentation

Paper
Paper
Display screen
Floppy disk
Magnetic disk
Magnetic disk

Remurks

Only output	 -
Only output
Only output
Input, output, sLorae

Input, output, Sterw
Input, output, stc5ge

External Storage Devices
The purpose of external storage is Lo retain data and programs fr future
usc'. For example, a program may be required at regular intervals. If
such information is stored in an external storage media, then one can
retrieve it as and when necessary, thus avoiding the need to type it

again. Any number of files containing information can be stored on

external media. Since they are permanent (they are not erased when the

equipment is turned ofl, one can store long files on external media, and
later on work on them in sections, keeping all the sections in storage
except the one currently in use.

The popular external storage media used with micro and mini
computers are floppy disks, hard disks and CD ROMs.

Floppy disks The most common storage medium used on small com-

puters today is a flopp.y disk. It is a flexible plastic disk coated with
magnetic material and looks like a phonograph record. Information can
be recorded or read by inserting it into a disk drive connected to the
computer. The disks are permanently encased in stiff paper jackets for

protection and easy handling. An opening is provided in the jacket to
facilitate reading and writing of information (Fig. 2.3).

Fig. 2.3 Floppy disk (5.25 inch)

24 Numerical Methods

Floppy disks are available in two standard slzes-525 inch and 3.5
inch. The 3.5 inch floppy disk, which was introduced later, can store
more information than the previous one.

Hard disks Another magnetic media suitable for storing large volumesof information is the hard disk, popularly known as the Winchester diskA hard disk pack consists of two or more magnetic plates fixed to a
spindle, one below the other, with a set of readJwrj heads The diskpack is permanently sealed inside a casing to protect it from dust and
other contaminations , thus increasing its operational reliability and dataintegrity.

W
inchester disks Possess a number of advantages compared to floppydisks:

1.
They can hold much larger volumes of information than floppies2. They are very fast in reading and writing.

3.
Hard disks are not susceptible to dust and static electricity,

Winchester disks are available in different Sizes and capacitiesStandard sizes are 5.25 inch, 8 inch, 10,5 inch and 14 inch. Storagecapacities of 260, 540, 680, 1000, 1200, 2000 megabytes are tpersonal computer	 ypical on a

D ROMs Compact disk read-only memory (CD ROM) disks are used
to distribute large volumes of data and text. Computer

programs anduser ma ntials are often distributed on CD ROM5,

DRIVING THE COMPUTER: THE SOFTWARE
Coniput need dear-cut in structions to tell them what to do, how todo, and when to d0.

A set of instructions to carry out these functions iscalled a progra,? ! A group of such programs that are put into
l its ac a computer operate and contro tivities is called the 'software These programsmust reside in the internal storage (memory) to execute their instruc-

tions. For example if we want to delete some data stored in
mulnorY, the

system uses one set of program instructions Similarly, if we want
sort a list of flames, it uses anothem set of 	 to

instrucLjns designed to per-form this task.
Software is an essential reqUiremenL of computa' Systems. Just as acar cannot run dt1iout fuel, a computer cannot work without

There are four major kinds of software that, are i
m plemented asin Fig. 2.4: operating system utility programs la

s	 ngnage proce5 andapplication programu
Software is intangible but resides on or is stored i

such as floppy disks and magnetic tapes. 	
in something ta hJ p

OPerating System

The software that manages the resoulces of a Computer
	 aidschedules its operation is called the

operating system The operating

Introduction to Computers and Computing Concepts

Application paciages

cage proceSso
programs

Operating system

Hard.varc

Fig. 2.4 Layers of software

system acts as an interface between the hardware and the user programs
and facilitates the execution of the programs (Fig. 2.4). 'l'Iie principal
functions of operating system include:

1. to control and coordinate peripheral devices such as printers, display
screen and disk drives

2. to monitor the use of the machine's resources
3. to help the application programs execute its instructions
4. to help the user develop programs
5. to deal with any faults that may occur in the computer and inform

the operator
The operating system is usually available with hardware

manufacturers and is rarely developed in-house owing to its technical
complexity. Small computers are built from a wide variety of micro-

processor chips and use different operating systems. Hence, an operating
system that runs on one computer may not run on the other. The popular
operating systems include, among others, MS DOS and UNIX.

Utility Programs
There are many tasks common to a variety of applications. Examples of

such tasks are:
1. sorting a list in a desired sequence
2. merging of two programs
3. copying a program from one place to another
4. report writing

One need not write programs for these tasks. They are standard, and
normally handled by utility programs.

Like operating systems, utility programs are pre-written by the

manufacturers and supplied with the hardware. They may also be
obtained from standard software vendors. A good range of utility programs
can make life much easier for the user.

2A Numerical Methods

Language Processors

Computers can understand instructions only when they are written intheir own language called the machine language Therefore, aprogram
written in any other language should be translated into machine lan-
guage. Special programs called language procthis job.	 essors are available to do

These special programs accept the user programs and check each
statement and, if it is grammatically correct, produce a corresponding
translators
set of machine code instniction 5 Language processors are also known as

There are two forms of translators: compilers and interpretersA compiler checks the entire user-written program known as thesource program)
and, if error-free, produces a complete program in ma-chine language (known as object program) The source program is re-tained for possible modifications and corrections and the object

programis loaded into the computer for execution
An interpreter does a similar job but in a different style. The inter-preter (as the name implies) translates one statement at a time and, if

error-free, executes the instruction This continues till the last state-
ment. Thus an interpreter translates and execut(s the fi rst instructionbefore it goes to the second, while a crnnpjlcr translates the entire pro-
gram before execution.

The maIm differences between a compiler and an interpreter are:
1. Error correctioa (called debugging) is much simpler in the case ofthe interpreter because it is done in stages. The compiler produces

an error list for the entire program at the end.
2 Interpretes take more time for the execution of a program compared

to mmpllers bccause a statement has to be translated every time itis read.
Compilers and interpreters are usually written and supplied by the

hardware vendors Since a compiler (or an interpreter) can
translateonly a par

ticular language for which it is designed, one will need to use
a separate translator for each language.

Application Programs

While an operating system makes the hardware run properly, applatjmiPrograms make the hardware do useful work. Application programs arespecially prepared to do certain specific tasks. They can be classified intotwo categories: standard applications and unique applications
Some applications are common for many organisations Ready-

software packages for such applications are available from hardwareand/or software vendors. Standard packages include, among others SalesLedger, Purchase Ledger, Statistical Analysis Pay Roll, PERT/CpM
Production Planning and Control,

Inventory Management and LinearProgramming.

Introduction to Computers and Computing Concepts

In some situations one may have to develop one's own programs to
Suit one's unique requirements. Once developed, they come into the
category of unique application packages.

PROGRAMMING LANGUAGES

The functioning of a computer is controlled by a set of instructions
(called a computer program). These instructions are written to tell the
computer:

1. what operation to perform
2. where to locate data
3. how to present results
4. when to make certain decisions
The communication between two parties, whether they are machines

or human beings, always needs a common language or terminology. The
language used in the communication of computer instructions is known
as the programming language. The compuLer has its own language and
any communication with the computer must be in its language or
translated into this language.

Three levels of programming languages are available. They are:
I. machine languages (low level lenguages)
2. assembly (or symbolic) languages
3. procedure-oriented languages (high level languages)

Machine Language
Computers are made of two-state electronic components which can
understand only pulse and no-pulse or '1' and '0') conditions. Therefore,
all instructions and data should he written using hinar', codes 1 and 0.
The binary code is called the machine code or machine language.

Computers, do not understand English, Hindi or Tamil. They respond
only to machine language. Added to this, computers are not identical in
design. Therefore, each computer has its own machine language.
(However, the script 1 and 0, is the same Ibr all computers). This poses
two problems for the user.

First, it is difficult to understand and remember the various
combinations of l's and 0's representing numerous data and instructions.
Also, writing error-free instructions is a slow process.

Secondly, since every machine has its own machine language, the
user cannot communicate with other computers (if he does not know its
language). Imagine a Tamilian making his first trip to Delhi. He would
face enormous obstacles as the language barrier would prevent him from
communicating.

Assembly Language
An assembly language uses mnemonic codes rather than numeric codes
(as used in machine language). For example, ADD or A is used as a
symbolic operation code to represent addition and SUB or S is used for

21 Numerical Methods

subtraction. Memory locations containing data are given names such as
TOTAL, MARKS, TIME, MONTH, etc.

As the computer understands only machine code instructions, a
program written in assembly language must be translated into machine
language before the program is executed. This translation is done b y a
computer program referred to as an assembler.

The assembly language is again a machine-oriented language and
hence, the program has to be different for different machines. The
programmer should remember machine characlerist.ics when he prepares
a program. Writing a program in assembly language is still a slow and
tedious task.

Procedure-Oriented Language (POL)

These languages consist of a set of words and symbols and one can write
programs using these in conjunction with certain rules. These languages
are oriented toward the problem to be solved or procedures for solution
rather than mere computer instructions. These are more user-centered
than the machine-centered languages. They are better known as high-
level languages.

The most important characteristic of a high-level language is that it is
machine-independent and a program written in a high-level language
can he run on computers of different makes with little or no modification.
The programmer need not know the characteristics of that machine.
However, such programs need to be translated into equivalent machine
code instructions befiro actual implementation.

A program written in a high-level language is known as the source
program and can he nm on different machines using difThrent translators.
The tra nslat.ed program is called the ofeect Program. The viaJor
disadvantage of high-level languages is that they take extra time for
conversion and thus, are less efficient compared to the machine-code
laiguages. Figure 25 shows the system of implementing the three level
of languages.

High-level _iCornpUed 	 ranslato..J Assombllanguagelanguage

	

Source	 /I	 \	 /

	

m	
(

Source
progra prograro

	

Object	 I

	

program	 I'

Machine
language !-------H Computer

(Data)

Fig. 2.5 Implementation of a program

Introduction to Computers and Computing Concepts •

Common High-level Languages
Many high-level languages have been developed during the last three

decadas. The most common high-level languages are FORTRAN, BASIC,
COBOL, C, PL/1, C++ and Java. Although they are less efficient than
the machine or assembly languages, they relieve the programmers of the
tedious task of remembering numeric codes for storage locations,
operations, etc. In addition, these languages are easier to learn and use.

The choice of a language depends upon many factors such as the
knowledge of the programmer, the computer, the problem to he solved,
etc. The languages that are used more popularly are given in Table 2.6.

Table 2.6 Summary of common high-level languages

Year La,iguuge Name' den e:ed
	

Developed by	 Application
tmln

1957 FORTRAN VOlrnula
	 IBM

TR_ANslatin
1958 ALGOL	 ALGOrithmic

	 International
Language	 group

1959 LISP	 LISt Processing
	 MIT, USA

96() APL	 A Programming	 IBM
Language

1961 COBOL	 COmmon Business Defence Dept.,
Oriented Language USA

1961 BASIC	 Beginner's All	 Dartmouth
purpose Symbolic College, USA
Instruction Code

1965 PL/l	 Programming	 IBM
Language 1

Science,
engineering
Science,
engineering
Artificial
engineering
Science,
engineering
Business

Engineering,
science, business,
education
General

1970 Pascal

1972 PROLOG

1973 C

1975 Ada
1983 C++

1991 Java

Blaise Pascal	 Federal Institute General
of I'echnology.
Switzerland

PROgramming in University of 	 Artificial
LOGic	 Marseille	 intelligence

Earlier language	 Bell Laboratory	 General
called B
Augusta Ada Byron U.S. [)efonce Dept General
Language C	 Bell Laboratory General,

object-oriented
prograii),Imflg

None	 Sun Microsystems General, internet,
object-oriented
programmfl8

IV Numerical methods

fl2.8.-INTERACTIVE COMPUTING

A major breakthrough in programming took place in the early 1960s
when interactive languages like BASIC were developed. With an
interactive language, we can converse (interact) with a computer. Most
of the modern languages including FORTRAN have incorporated
interactive features. With the help of an interactive language, we may
engage in a conversation with our computer like this:

I am co:npuLlng S.11fl Of two values
Pledge input: value of X

Please input value of Y
120.50
SUM of X any Y is 376.25

Do you want rue to do one moxe sass?
No Thanks

Bye then, See you again

The lower-case words are of the computer and the words underlined are
ours. Such interactive computing would be useful in determining certain
intermediate results and taking actions depending upon the values.

PROBLEM SOLVING AND ALGORITHMS

Mathematical problems that can be solved through the computer may
range in size and complexity. Since the computer does not possess any
common sense and cannot make any unplanned decisions, the problem,
whether it is simple or complex has to he broken into a well-defined set
of solution steps. it should he remembered that computers do not "solve"
problems; rather, they are used to implement. the solutions to problems,

In every instance of problem solving, the computer cannot be used to
solve the problem until a method of solution has been evolved and a
detailed procedure has been prepared by the 115cr. It is assumed that the
user has a certain amount of background knowledge, knows certain facts
about the problem and possesses sufficient deductive and reasoning skills.

Problem solving involves the following steps:
I. studying the problem in detail
2. redefining or restating the problem
3. identifying output requirements, input data available and conditions

and constraints to he used
4. comparing alternative methods of solution
5. selecting the method which is considered to be the best
6. preparing a logical and concise list ol 'proceduies or steps necessaryfor determining the Solution
7. computing the results
8. examining the results for correctness

Introduction to Computers and Computing Concep

The computer's help may be necessary only in. the seventh gt,. A
the remaining steps are to be performed by the user. it is this fact that a
beginner finds difficult to appreciate.

The logical and concise list of procedure for salving a problem is called
an algorithm. Tt describes the steps that lead to wiaxubiguous results in
a finite number of operations. Figure 26 illustrates an algorithm liar
finding the square root of a set of N numbers.

Step 1: Find out the number of values for which square roots are to be
evaluated.

Step 2: Take a value.
Step 3: See whether the value is positive or negative. If positive, go to

Step 4, otherwise go to Step 6.
Step 4: Evaluate the square root.
Step 5: Record the value and its square root.
Step 6: Repeal Steps 2 to 5 until all the values are completed.

Fig. 2.6 Algolhm for finding the square root of a given set of values

An algorithm prepared for the first time might need review to:
1. determine the correctness of various steps
2. reduce the number of steps, if necessary
3. increase the speed of solving the problem
An algorithm should also include steps to identify any abnormal data

or results and take corrective measures, if possible. In case of large
problems, we can break them into parts representing small tasks, prepare
several algorithms and later combine them into one large algorithm.
This is known as the modular approach.

Developing computer programs using the modular approach is known
as modular programming. A module is a program unit or entity that is
responsible for a single task. Modules known as subprograms) are
arranged in a hierarchical structure (similar to an organisation chart) as
shown in Fig. 2.7, This is essentially top-down design in which bigger
modules are broken into smaller ones such that they are small enough
to be understood and easily coded using simple logic.

Main program

SubProram1J	 Subprogram 2	 Subprogram 3]

1

Subprogram 21 1	 I Subprogram 22

Fig. 2.7 Top-down modular design of a program

Numerical Methods

FLOW CHARTING

When organising a problem for computer solution, it is desirable to
present the algorithm pictorially. A flow chart is a diagram that outlines
the sequences of operations to be performed. The operating steps are
placed in boxes that are connected by arrows to indicate the order of
execution of steps. Figure 2.8 illustrates the flow chart for the algorithm
shown in Fig. 2.6. It is perhaps the best available method for expressing
what the computer must do. Some symbols commonly used in flow charts
are shown in Fig. 2.9.

Start

/ Is
No,/ value

Yes
Find the square

root

Write the value and
its square root j

it the'N,, No
last	 >—

Yes

op

Fig. 2.8 Flow chart for finding the square root of a given set of numbers

The important functions of a flow chart are as follows:
1. It provides a graphic representation of the problem so that it is

easier to understand the plan of solution,
2. It provides a convenient aid to writing computer instructions

(program).

Introduction to Computers and Computing Concepts

3. It assists in reviewing and correcting the program.
4. It helps in discussion of the solution logic with others.
While drawing a flowchart, one must remember the following:
1. First list the logical steps.
2. Complete the main path of the logic first and then complete all

branches and loops.
3. Use descriptive terms or mathematical equations in the boxes.
4. Each box should represent a step that is meaningful.
5. Use unambiguous terms in the flow chart so that others can easily

understand it,

Start or end of the program

Computational steps

L _7
0
0 -

Input or output instructions

Decision-making and branching

Preparation

Connector or Joining of two parts of program

Flow of control
Fig. 2.9 Flow chart symbols

STRUCTURING THE LOGIC

Solution steps of all problems can he organised into one or combination
of the following three control structures:

1. sequence structure
2. branching structure
. looping structure

Sequence structure is used when the solution does not involve any
repetitive operations or options. This is known as straight-line logic and
is illustrated in Fig. 2.10.

Branching refers to the process of following one of two or more alternate
paths of computations. This happens at a point where a test is performed
to identify the conditions of certain variables in the process. The basis
for selecting a particular path is stated within the decision box. The
decision can be based on a comparison, on the value of a variable, on the
sign of a variable, etc. The basic flow charts associated with branching
are shown in Fig. 2.11.

4 Nurnedcol Methods

Start

Add A and B

Print
Result

(Stop)

Fig. 2.10 Sequence structure

Yes
Test_	 Test

Yes

No 	 ___	 ________

[_Acnon2[tioJ	 Ltoni

Action2 1	 Action3

(a)

	

	 (b)
Fig. 2.11 Branching structure ((F THEN ELSE)

In Fig. 2.11(u), a few steps are bypassed and the program is rejoined
at a later stage. This is known as fbrward jump. In Fig. 2.11(b), each
branch contains one or more computational steps. The two branches
may join up again in the main path or may contain completely different
steps and only join up at the end.

Looping refers to the repeated use of one or more steps. There are two
types of loops. One is the fixed loop where the operations are repeated a
fixed number of times. In this case, the values of the variables inside the
loop have no effect on the number of times that the looping operation is
performed. The other is the variable loop where the operations are re-
peated until a specified condition is met. Here, the number of times that
the loop is repeated may vary. Searching for a particular item in a list of
items is an example of variable loop.

(a) Do

COMPUtE

 and Te

Introduction to Computers and Computing Concepts

Loops are also referred to as backward jumps. These jumps may occur
either after meeting a specified condition in the process or after doing a
certain computation. These jumps (loops) are illustrated in Fig. 2.12.

(c) A mixed loop
Fig. 2.12 Ulustration of loops

USING THE COMPUTER

Computers can he used to solve specific problems that may be scientific
or commercial in nature. In either case, there are some basic steps
involved in using the computers These are as follows:

Numerical Methods

1. Problem analysis Identify the known and unknown parameters
and state the constraints under which the problem is to he solved.
Select a method of solution.

2. Collecting infbrmalion Collect data, information and the documents
necessary for solving the problem and also plan the layout of output
results.-.

.. Preparing the computer logic identify the sequence of operations

to he performed in the process of solving the problem and p]an the
program logic, preferably usmg a program how chart.

4. Writing the computer program Write the program of instructions
for the computer in a suitable language.

t Testing the program There ma.y he errors bugs) ill the program.
Remove all these errors which may be eit:.lier in using the language

W' in the logic.
6. Prcjiarirzg the data Prepare input data in the required form.

7. Running the program This may be done either in batch mode or

interactive mode. The computations are performed by the computer
and the results are given out.

The selection of a particular input/output device depends upon the
nature of the problem, type of input daia and the form of output required.

SUMMARY

We have discussed in this chapter the following aspects of computers
and computing technology:

evolution of computing devices
generations of modern computers
diffirent types of computers

• input-process-output, cycle of computing
organisation and structure of a computer

• functions of various input, output and storage devices
• need for various types of computer programs
• importance of programming languages and their applications
• steps involved in solving mathematical problems
• use of flow charts for representing prohlcmsolviflg algorithms
• application of modular and structured programming techniques for

implementing computer-based solutions

Key Terms

Abacus	 Low level language
Algorithm	 Machine code
Analog computer	 Machine language
Application programs	 mainframe computer

Assembler	 Mark I
Assembly language	 Microcomputer

(Contd.

introduction to Computers and Com puting Concepts Z

(Conid.)
8/nary code
Branching structure
Compiler
Computer program
Computer-aided design
Computer-aided learning
Computer-aided inanufacturc
Computer-managed learning
Data
Debugging
Digits! computer
ENIAC
Expert systems
Fifth generation
First generation
Floppy disk
Flow chart
Fourth generation
Hard disk
Hardware
High-level language
Hybrid computer
IC chips
Information
Interactive computing
Interpreter
Knowledge-based systems
Language processors
Large-scale integration (LS/)
Logarithm
Looping structure

Microelectronics
Midroprocessor
Minicomputer
Modelling
Modular programming
Object program
Operation system
Parallel computer
PCAT
PCXT
Pentium
Personal computer
Second generation
Sequence structure
Simulation
Slide rule
Software
Source program
Straight-line logic
Structured programming
Supercomputer
Third generation
Top-down design
Transistor
Translators
UNIVAC
Utility programs
Vacuum tube
Winchester disk
Workstation

1. Describe the abilities of modern computers that are directly relevant
to numerical computing.

2. List at least two applications of computers in each of the following
areas:

(a) Industry
(h) Business
(c) Education
(d) Engineering

Match the items in the following lists:
() China	 (ii Punched Cards
(b) John Napier	 (ii) Accounting Machine
(C) Blaise Pascal	 (iii) Abacus

Numerical Methods

(d) IBM	 (iv) Logarithm
e Jacquard)v) Mark I

4. Describe briefly the developments in computing technology during
the three decades from 1945 to 1975.

5. Describe the technology of fourth generation computers. How are
they better than the earlier computer models?

6. What are fifth generation computers? How are they different from
Fourth generation systems?

7. Distinguish between analog and digital computers.
8. Distinguish between special purpose and general purpose computers.
9. A majority of computers used in the world today are digital. Why?

10. What are personal computers? How are they different from
microcomputers?

11. Describe the relevance of supercomputers to engineers and scientists.
12. Define each of the following terms in one sentence:

(a) Computer Program
(h) Hardware
(C) Information
(d) Data
(e) Software

13. Describe the functions of the following units in a computer:
(a) Memory Unit
(b) Arithmetic Logic Unit
(c) Storage Unit

14. Describe how an application program is implemented in a computer.
15. Why do we need language processors? Describe the two forms of

language processors available.
16 Compare the functions of application programs with that of operating

systems.
17. What is machine language? What are its limitations?
18. How is assembly language better that machine language?
19. What are the features of high-level languages?
20. How is a program written in a high-level language implemented on

a computer?
21. State the contributions of the following organisations to the

development of high-level languages:
(a) IBM
(b) Bell Laboratory
(c) US Defence Department

22. What are the advantages of interactive computing?
23. State the main steps involved in solving a mathematical problem.
24. What is an algorithm? How is it useful for a programmer?
25. What is modular programming? How does it help in solving a

problem?
26. Why do we often use flow charts for developing computer pro-

grams?

tfltrocjucfjon to Computers and Computing Concepts

27. Describe the three basic control structures
solution steps.	 used in executing the

28. Critically compare the Do-and-Test and Test-ajidD0 looping struc-tu res.
29. Compare the following:

(a) Forward jump versus backward jump
(b) Fixed loop versus variable loop

30. Describe the basic tasks involved in solving a
computer	 problem using a

CHAPTER

Computer Codes and
Arithmetic

T11INTRODUCTION
Computers store and process ,iumbers, letters and words that are often

referred to as data. how do we communicate these numbers and words
to computers? Flow do computers store this data and process theni?
Since computers cannot understand the Arabic numeral or English
alphabet, we should use some "code-;" that can easily he understood by
them.

In all modern computers, storage and processing units are made of a
set. of silicon chips, each containing a large number of transistors. A
transistor is a two-state device that can be put off' and "on" by passing
an electric current through it. Since the transistors are sensitive to
currents and act like switches, we can communicate with the computers
using electric signals, which are represented as a series of "pulse" and
"no-pulse" conditions. For the sake of convenience and ease of use, a
pulse is represented by the code "1" and a no-pulse by the code "0". They
are called biis, an abbreviation of "binary digits". A series of l's and 0's
are used to represent a number or a character and thus, they provide a
way for humans and computers to communicate with one another. This
idea was suggested by John Von Neumann in 1946. The numbers
represented by binary digits are known as binary ,,unibe,s. Computers
not only store numbers but also pci-form operations on them in binary
form. Although information is sMred in the computer memory in
combinations of 0's and l's, binary numbers become cumbersome when
expressing large numbers. For this reason, internal contents of a computer
are not displayed in binary form. Instead, they are displayed as
hexadecimal or octal systems. Number systems that are popularly used

in computing are the decimal system,

Computer Codes and At1ffij0
4j

	

and octal system	 binary system, hexadecimal system
In this c

hapter, we will discuss the Various number systems and their
conversion from one system to another. We shall also discuss the internalrepresentation of numbers and their arithmetic operations.

DECIMAL L SYSTEM MA L S YSTEM

The decimal number system so familiar t
number syste	 o us, is the oldest positionalm. In a Positional

system, a number is presented by a setof snnbols Each symbol presntg a particular value depending on itsPosition. The actual number of symbols used in a positional systemdepends on its base.
The decimal system uses a base of 10 and thus it uses 10

sbol5, 0 to9. Any number can he represented bysPositions	 riboIs in variousIn the decimal system each position represents a specific powerof 10. Each successive
a value	 Position to the left of the decimal point representsten times greater

than the Position o its immediate rightshown below	 t

Position --	 6	 5	 3	 2Place Vue	 10	 10' 10	 l0	 102	
1	 0

10 1	100For example the decitnaj number 5704
represents:3	 2	 1	 0

	 Positionio	 102	 10'	 100	 -_-_- Value

	

7	 0	 4	 Decimal pointL_

	

 4 x10°	 4

	

101	 0
 700

-	 SxjOl	 =.

Sum 574
We can express this in genera' form as

d, 11 0a) + d,,	 (10") + ... + d0 =	 d, 10
where d, are the decimal symbols, 0 to 9 and rnSy	 - I are the number ofiflE,ols This is called the expanded notation for the

integer.Similarly , a fractional part of a decimal number can be represented as

10

wbert, n is the number of Spnboj5 in the fractional 1)a.

42 Nuinecicul Methods

BINARY SYSTEM

The binarybinary system is the positional number system to the base 2. IL uses
two symbols 0 and 1. Again, each position in a binary number represents
a power of the base as shown below.

	

Position	 (3	 5	 4	 2	 1	 0

Place Value	 2°	 25	24	21	22	21	2°
(64) (32) (16)	 (8)	 (4)	 (2)	 (1)

Note that each successive position in the integer part of the binary
number has a value two times greater than the position to its right.

For example, the binary number 1101 represents the decimal values

as shown below:

	

3	 2	 1	 0	 Position

	

23 	 22	 21	 211	 Value

	

1	 1	 0	 1	 Binary point

L -----

	

I	
L-	 0x2	 =	 0

- -	 I x 4	 4
--	 I x S	 =	 8

Sum	 13

That is, 1101 2 13
The subscript 2 denotes a number in binary system and 10 denotes a
number in the decimal system. In general form, it can be written as

d m (2)") +	 =_te +4(=d 2

where d are the binary symbols, 0 or 1. We can further generalise the

aol,atinfl to any base h as Yd j b

Note that the base h is usually an integer greater than one, and digits d1

are between 0 and b 1. The base is sometimes called radix and the

fractional point is called radix poin/.

HEXADECIMAL SYSTEM

The hexadecimal system is number system that uses 16 as its base.
This system requires 16 one digit symbols The first ten symbols are
represented by digits 0 through 9 and the remaining 81X by the letters A

through F. The letter A denotes 10, B denotes 11 and so on. Table 3.1
shows equivalents of decimal, binary, and hexadecimal values.

2	 1

00
0	 1
1	 0
1	 1
0	 0
0	 1
1	 0
1	 1
0	 0
0	 1
1	 0
1	 1
0	 0
o	 i
1	 0
1	 1

Ffexadecjmal
System

0
1
2
3
4
5
6
7
8
9
A
13
C
1)
E
F

Computer Codes and Arithmefic 43

Table 3.1 Equivalent values of different systems

Decimal	 Binary System
System Weight —a	 84

0	 0	 0
1	 0	 0
2	 0	 0
3	 0	 0
4	 0	 1
5	 0	 1
6	 0	 1
7	 0	 1
8	 1	 0
9	 1	 o
10	 1	 0
11	 1	 0
12	 1	 1
13	 1
14	 1	 1
15	 1	 1

In the hexadecimal system, each position represents a value 16 times
greater than the position to its immediate right. The place values of
hexadecimal system are shown below:

Position	 -	 4	 3	 2	 1	 0

	

Place Value	 ----	 16416:1 16	 16 1 160
The following example illustrates the decimal value represented by a

hexadecimal number.

3	 2	 1	 0	 Position
16	 162	 161	 160	 Value

1	 2	 A	 F	 Hexadecimal point
15x1	 =	 15
10x16	 =	 160

L2x256 = 512
----------- 1 x 4096 = 4096

Sum 4783
Thus, 12AF 16 = 4783,

To convert a binary number to hexadecimal, we need only to group
the binary dig-its in sets of four and convert each group to its equivalent
hexadecimal digit. Thus, the binary number 0111 1010 0001 0010 0001
becomes 7Al21 in hexadecimal This is illustrated below:

Binary quadruplets; 	 0111	 1010	 0001 0010 0001

Hexadecimal point	 7	 A	 1	 2	 1

44 NumeflCai Methods

This example clearly illustrates the advantage of hexadecimal system
over binary system. For all large binary numbers, the hexadecimal rep-
resentation is much more compact and, therefore, easier to write and
manipulate than its binary equivalent.

OCTAL SYSTEM

The octal number system is a system having base s as S. The eight uclal
symbols are 0 through 7. The place values in the octal system are pow-
ers of 8 as shown below:

Position	 --	 4	 3	 2	 1	 0

Place Value	 83	 92	 81	 80
The position values increase by a factor of 8 from right to left. The
example below shows an octal number and its equivalent decimal value:

3	 2	 1	 0	 Position

8	 81	 80	 -- Value

2	 1)	 5	 6	 Octal point

	 40L_____________ :: =
-. 0x64 =	 0

I	 2 x 512 = 1024

Sum	 1070

Thus. 2056 = 1070
Since 8 21, each octal digit has a unique 3 bit binary representation.

This is shown in Table 3.2.

Table 3.2 Binary represen tation of octal digits

Octal	 Binary Representation

0	 000
1	 00)
2	 010

011
4	 100
5	 101
6	 110
7	 111

Just as in the hexadecimal system, to convert a binary number to octal,
it is only necessary to group the binary digits in sets of three and con-
vert each set 1.0 its octal equivalent. For example, the binary number
1011010 can he represented in octal as follows:

Computer Codes and Arithmetic 4

Binary triplets	 001	 011	 010

Octal equivalent

• CONVERSION OF NUMBERS

We discuss here the following systems of conversion:
1. non-decimal to decimal system
2. decimal to non-decimal system
3. octal to hexadecimal system
4. hexadecimal to octal system

Non-decimal System to Decimal System
We can convert a number in base 2, base 8 or base 16 to a decimal
number using the expanded notation discussed so far. This conversion
can also be accomplished using the following algorithms.

Integral Part
1. Multiply the leftmost digit by the base 1
2. Add the next digit to the right to the product
3. Multiply the sum by the base b and add the next digit
4. Continue the process until the last. (rightmost) digit is added

The sum is the decimal equivalent of the given integer number

Fractional Fort
1. Multiply the rightmost digit by 1/1)
2. Add the next digit to the left to the product
3. Multiply the sum by i/b and add the next digit
4. Continue this process until the last (leftmost) digit in the fractional

part is added
5. Multiply the last sum by 11h

The product is the decimal equivalent of the given fractional number.
Note that, in the integral part algorithm, the process ends when the

rightmost digit is added, but, in the ease of fractional part algorithm, the
process ends when the leftmost digit is added and the final sum is
multiplied by 1/1).

Convert binary number 1101.1101 to its decimal equivalent.

We can convert the given binary number to the decimal equivalent using
the above algorithm as follows:

Integral Part	 Decimal Part
1	 1	 9	 1	 1	 1	 0	 1

I	
0.5

Decimal Part

4 Numerical Methods

Integral Part
1	 1	 0

9
+ I -------------

6

(3
x2
12

•- 1	 ----------
13

Decimal value = 13.8125

0.5
+0
0.5
x 0.5
0.25
+1
1.25

_X-0. 5
0(325
+1
1.625
x 0.5
0.8125

Convert the hexadecimal number I2AF to a decimal number

Conversion is done as follows:
Integral Part

1	 2 A F
1-a'	 I

16
16

+2
18

x 16
288

+10 ---
298
x 16

4768
+ 15
4783
Thus, 12AF 16 = 4783

Decimal System to Non-decimal System
It is easy to convert a decimal number to a number of any other system.
To do this, we must consider the integer and fractional parts separately
as we did earlier. Algorithms to accomplish this are given below:
Integral Part

1. Divide the integer part of the decimal number by the base b of the
new system. The remainder will constitute the rightmost digit of
the integer part of the new number.

Computer Codes and Arthmef;c 47
2. Divide the quotient again by the base h. The remainder is the

second digit from right.
3. Continue this process until a zero quotient is obtained. The last

remainder is the leftmost digit of the new number.
Fractional Part

1. Multiply the fractional part of the decimal number by the base b of
the new system. The integral part of the product constitutes the
leftmost digit of the fractional part of the new number.

2. Multiply the fractional part, of the product by the base b. The inte-
gral part of the resultant product is the second digit from left.

3. Continue the process until a zero fractional part or a duplicatefractional part occurs. The integer part of the last product will be
the rightmost digit of the fractional part of the new number.

Nate that a duplicate fractional part indicates that the sequence will be
an infinite one. The particular block of digits will be repeated over and
over again.

Convert the decimal 43.375 into its binary equivalent.
Integral Part

	

DlviSjOI)	 Remainder
2

	

2	 21	 -
2 . 10

Integral part of binary numberThe digits in the remainder form the binary number when the are

	

dropped to the right,	 y

Fractional Part

F'ractional part of binary number

	

Mu ltiplicajo	 Product Integral part

	

0.375 x 2	 0.75	 0 ------------i

	

0.750 x 2	 1.50	 1

	

0.500 x 2	 1.00	 1

Th e digits in the integral part form the binary number when they are
read from the top down or lifted up to the right as shown).	Thus, 43.37	 = 101011.0112

Al NumercaI Methods

Convert the decimal number 163 to an octal number.

Division	 Remainder

8 163
8 [20
8 2

0

Thus, 163	 243

-..-..- 3

_

P IILii
Octal number

Convert the decimal number 0.65 to its binary equivalent.

Multiplication
	 Product
	

Integral part

	0.65 x 2
	

1.3

	

0.3 x 2
	

0.6
	

0

	

06 > 2
	

1.2
	

1

	

0.2 x 2
	

0.4
	

0

	

0.4 x 2
	

0.8
	

(I

	

x 2
	

1.6
	

1

	

0.6 x 2
	

1.2
	

1

	

0.2 x 2
	

0.4
	

0

	

0,4 x 2
	

0.8
	

0

	

0.8 x 2
	

1.6

Thus, 0.65 = 1010011001
Note that a terminating decimal fraction need not have a terminating
binary equivalent. This happens when a fractional part is repeated and
therefore the process is terminated.

Octal and Hexadecimal Conversion
Using the binary system as an intermediate stage, we can easily convert
octal numbers to hexadecimal numbers and vice-versa. The steps are as
follows:
Octal to Hexadecimal

1. Write the octal number.
2. Place the binary equivalent of each digit below the number.
3. Regroup them as binary quadruplets from the binary point, with

zeros added, if necessary.
4. Convert each group into its oquivalent hexadecimal digit.

Hexadecimal to Octal
1. Write the hexadecimal number.
2. Place the binary equivalent of each digit below the number.

Computer Codes and Arithmetic

3. Regroup them as binary triplets from the binary point, with zeros
added if necessary.

4. Convert each group into its equivalent octal digit.

Convert the octal number 243 to a hexadecimal number.

Octal	 2	 4	 3	 -	 - Octal point

Binary equivalent	 010	 100 011 -- --	 Binary point
Regrouped as
binary quadruplets 0000 1010 0011

Hexadecimal	 0	 A	 3
Thus, 243 - A316

Convert the hexadecimal number 39,B8 to an octal number.

Hexadecimal	 3	 9	 .	 B	 SIt
Binary equivalent	 0011 1001	 .	 1011 1000

Regrouped as
binary triplets 	 000	 111	 001	 .	 101 110 000

I	 I	 I	 I	 I
Hexadecimal	 0	 7	 1	 .	 5	 6	 0
Thus, 39.B8 1 =

The grouping of binary digits into triplets or quadruplets plays an im-
portant role in the internal organisation of information in computers.
They are often used to represent long binary strings with lesser number
of symbols.

REPRESENTATION OF NUMBERS

As mentioned earlier, all modern computers are designed to use binary
digits to represent numbers and other information. The memory is usu-
ally organised into strings of bits called words. Each such string has the
same length in a particular computer, although thfThrent computers may
use different word lengths. For example, IBM PC and AT systems use a
word length of 16 bits, while VAX 11 systems use a word length of 32 bits.

The largest number a computer can store depends on its word length.
For example, the largest binary number a 16 bit word can hold is 16 bits
of 1. This binary number is equivalent to a decimal value of 65535. The

Q Numerical Methods

largest decimal number that can be stored in a computer is given by the
following relation:

Largest number = 2'; - 1
where n is the word length in bits. Thus, we see that the greater the
number of bits, the larger the number that may be stored.

Although the computer works well with the binary numbers, humans
do not. Firstly, it takes too many bits to represent a number. Secondly,
writing such long series of bits can be exhausting and may cause errors.
This is why we have other systems such as octal, hexadecimal and deci-
mal systems. Computers read decimal numbers supplied by humans but
convert them automatically into binary numbers for internal use. These
binary numbers may also be expressed in the octal or hexadecimal form
for print-out or display. For output, the numbers are reconverted to
decimal form for human use.

Integer Representation
Decimal numbers are first converted into the binary equivalent and
then represented in either integer or floating point form. Let us first
consider the integer representation.

For integers, the decimal or binary point is always fixed to the right
of the least significant digit and therefore, fractions are not included. As
mentioned earlier, the magnitude of the number is restricted to 2" - 1,where n is the word length in hits.

How do we represent negative numbers? Negative numbers are stored
by using the 2's complement. This is achieved by taking the l's comple-
ment of the binary representation of the positive number and then add-
ing 1 to it.

Represent -13 in binary form.

13 = 01101
l's complement = 10010

+ 00001
2's complement = 10011

Thus, -13 10011

Note that we have used an extra 0 to the left of the binary number
representing 13. This is to indicate that the number is positive.

Then, if the leftmost bit is 1, the number is negative. The leftmost (or
the most significant) bit of a binary n'i.mber which is used to indicate the
sign is called the sign bit.

Now we see that if we reserve one bit to represent the sign of the
number, we have only n - I bits to represent the number. Thus, a 16 bit
word can contain numbers - 2' to 2'5 - 1 (i.e. -32768 to 32767).

Computer Codes and ArIthmeac

Show that the number -32768 is represented in a 16 hit word asLTroTc j 00 LIJT TFTöT
	-32768	 =	 (-32767) + (-1)
	32767	 =	 0111 IL11 11111111
	I's complement	 =	 1000 0000 0000 0000

+ 0000 0000 0000 0001

	

-32767	 =	 10000000 0000 0001	 (a)
	1 	 =	 0000 0000 0001 0001

	

I's complement	 =	 1111 1111 1111 1110
= + . 0000 0000 0000 0001

	

-1	 =	 iiiiiii liii	 (b)

	

-32768	 1000 0000 0000 0000	 ---- (a) + (b)

Floating Point Representation
We have just seen how integer numbers are represented. We have ae
seen that a 16 bit computer cannot store a positive number huger than
32767. What if we want to handle a fractional number like 35.7812 or it
large number like 987654321? Such numbers are stored and a-ed
in what is known as exponential form. These numbers have an enth-
ded decimal point and are called floating point numbers or real nLbfrE
For example, 35.7812 can be expressed 0.367812 x 102 . Sity,
number 987654321 can be expressed as 0.987654 x 10 9. By writing a
large number in exponential form, we lose some digits. If x is a iaI
number, its floating point form representation is

=f X
10E

The number f is called mantissa and E is the exponent.
Floating , point numbers are stored differently. The entire mIvity

location is divided into three fields or parts as shown in Fig. 3.1. The
first part (1 bit) is reserved for the sign, the second part (7 bits) for the
exponent of the number, and the third (24 hits) for the mantiaa of the
number. Typically, floating numbers use a field width of 32 bits where
24 bits are used for the mantissa and 7 bits for the exponent.

	

31	 30	 24 23	 0

[1 EXPONENT	 - MANTISSA

1 bit	 I-	 7 bits	 24 bs

Fig. 3.1 Floating point representation

2O9

2 Numeilca) Methods

Thus, we can represent very small fractions or very large numbers with-
in the computer using the floating point representation.

Cwi'rt the following numbers to floating point notation.
000596,	 65.7452,	 - 486.8

	

0.00596	 is expressed as	 0.596 x 10_2

	

65.7452	 is expressed as	 0.657452 x 102

	

—486.8	 is expressed as	 - 0.4868 x 10

The shifting of the decimal point to the left of the most significant digit

is called norrnalisa.tion and the numbers represented in normalised form
are known as normalised floating point numbers. You may note that the

mantissa should satisfy the following conditions.
For positive numbers: less than 1.0 but greater than or equal to 0.1
For negative numbers: greater than —1.0 but less than or equal to 0.1

That is, 0.1	 < 1
The normalised floating point numbers are written using the following

notation:
0.596 x 10- 2	written as	 .596 E - 2

- 0.4868 ' 103	written as	 -.4868 E3

COMPUTER ARITHMEflC

Different systems of computer arithmetic are currently available. They
include integer arithmetic, fixed point arithmetic, floating point arith-
metic, interval arithmetic and karisruhe accurate arithmetic.

They are either supported by hardware or software or some software/
hardware combinations. Each system uses its own scheme for represent-
ing numbers in binary form within the machine. The most common and
popular arithmetic systems are integer arithmetic and floating point
arithmetic. These systems are discussed briefly in this section.

Integer Arithmetic
Virtually all computers offer integer arithmetic. The main property of
integer arithmetic is that the result of any arithmetic operation with
integers is an integer. The other property is that the result is always
exact with the following two exceptions:

1. The range of integers that can be represented is not infinite but is
bounded above and below.

2. The result of an integer division is usually given as a quotient and
a remainder (since fractions cannot be represented in the integer
scheme) which is truncated.

Computer Codes and MlIirfc

Illustrate integer arithmetic

Addition:	 25 + 12 = 37
Subtraction:	 25 12 = 13

12- 25= -13
Multiplication: 25 > 12 = 300
Division:	 25 - 12 = 2

12-25= 0
Note that as only a finite range of integers can be represented,
product of two numbers may exceed the range.

Show that the following rule does not generally hold good in inteow
arithmetic.

= a b
C	 C C

Let u=5,b-=7 and c=3

a4-b 5+7
Then,	 =	

12
- =	 4

c	 3	 .3

C c	 3 3

The results are not identical. This is because the remainder of aninte-
ger division is always truncated,

Floating Point Arithmetic
Although integer arithmetic is adequate in many computing applica-
tions, it does not meet the requirements of many numerical compung
methods as they often involve manipulation of fractional numbers. Hence,
floating point arithmetic is the preferred choice for a majority of numer-
ical computing applications.

In the floating point system, all the numbers are stored and processed
in normalised exponential form. The most difficult operations in the
floating point arithmetic are addition and subtraction.

Add/Hon Let the two numbers to be added be x and y, and let z be the
result. Let the fractional parts and exponents be f,, fy and /, and E, E,
and E, respectively Then, the addition algorithm is as follows:

1. Set E, the larger of E1 and E. (Assume here E >= E,. Then
E - Er).

2. Shift Right. Shift f to the right by .1 - E places. (This makes the
exponent of f and /; the same).

M Numerical Methods

3. Add. Set f1=f1+f
4. Norrna,U.se. If the absolute value of f, is greater than one, shift the

decimal point off, to the left of the most significant digit and then
increase E by one.

Then	 zf1x10'

In all the manipulations, the result of any operation is normalised
and the mantissa is rounded or truncated to p digits, where p is the
precision of the computer used. In the examples discussed here, we
assume a precision of 6 and the mantissa is truncated to 6 digits.

Add the numbers 0.964572 E2 and 0.586351 E5.

Let = 0.586351 and = 0.964572 E2
= 5

f = 0.000964
0.000964 0.586351 = 0.587315

Then, z = 0.587315 ES
Note that both the mantissa and exponent of the number with the small-
er exponent are modified and the modified mantissa is truncated to six
digits.

Add the numbers 0.735916 E4 and 0.635742 E4.

El, = 4
0.735816 + 0.635742 = 1,371558

2 = 1.371558 E4 = 0.137155 £5
Note that the mantissa of the result is truncated,

Subtradion Subtraction is nothing but addition of numbers with dif-
ferent signs. However, the subtraction of mantissas may result in a
number less than 0.1. In such cases, the decimal point should be shifted
to the left of the most significant digit and the exponent of the result
should then be decreased accordingly.

Subtract 0.994576 E••3 from 0.999658 E-3.

Let x = 0.999658 E-3 and = 0.994576 E-.3
E2 -3
12 = 0.999658 - 0.994576

= 0.005082
z —x --y

= 0.005082 E - 3
0.508200 E - 5 (normalised)

Computer Codes and AriThrnljc

Muftlpilcation Multiplication of two floating point numbers is relative-
ly simple.

1. Multiply the fractional parts: f = f f
2. Add the exponents: E = E +
3. Then, z = f x 10E2

4. Normalise, if necessary.

Multiply the numbers 0.200000 E4 and 0.400000 E - 2

f = 0.200000 x 0.40000()
= 0.080000

E, 4 - 2 = 2
z = 0.080000 E2 = 0.800000 El (normalised) = 0.800000

Division Division is done as follows:
1. Divide the fractional parts: f.
2. Subtract the exponents: E2 =	 - E.

= ,r <
4. Normalise, if necessary.

MOEN
Divide the number 0.876543 E - 5 by 0.200000 E - 3

f. 0.876543 0.200000
= 4.382715
= -5 - (-3) -2

z = 4.382715 E - 2
0.438271 E - 1 (normalised)

Note that the mantissa of the result is truncated,

-j 39 ERRORS IN ARITHMETIC

In integer arithmetic, while all arithmetic operations are exact, we might
come across the following two situations:

1. An operation may result in a large number that is beyond the
range of the numbers that the computer can handle.

2. An integer division may result in truncation of the remainder.
When the result is larger than the maximum limit, it is referred to as

an overflow and when it is less than the lower limit, it is referred to as
uriderfiow. Unfortunately, most computers do not issue any warnings or
messages on integer overflow or underfiow. Therefore, we should use
integer arithmetic with utmost. care.

The floating point arithmetic system is prone to the following errors:
I. Error due to inexact representation of a decimal number in binary

form. For example, consider the decimal number 0.1. The binary

Numedcal Methods

equivalent of this number is 0,000IIOO11001L... The binary equiv-
alent has it repeating fraction and therefore must be terminated at
some point.

2. Error due to rounding method used by the computer, in order to
limit the number of significant digits. This was illustrated in the
examples discussed in Section 3.8. In fact, if the numbers added
are too different in magnitude, the smaller may be treated as if it
were zero (see Example 3.18).

3. Floating point subtraction may induce a special phenomenon. It is
possible that some mantissa positions in the result are unspecified.
This happens when two nearly equal numbers are subtracted, This
is known as subtractive cancellation. If the operands themselves
represent approximate values, the loss of significance is serious
since it greatly reduces the number of significant digits. The error
can be arbitrarily large (see Example 3.21).

4. Overflow or underfiow can occur in floating point operations when
the result is outside the limits of floating point number system of
the computer.

The following examples illustrate these errors

-1 	 8j
Add tl-w iiurnbens 0.500000 El and 0.100000 E - 7.

Let
x = 0.500000 El and y = 0.100000 E - 7

E2 I
= 0.000000001.
= 0.500000001 = 0.500000

z = 0.500000 El
Note that the value of z is the same as that of x.

Multiply the number 0.350000 E40 by 0.500000 E70 	 -

110
f.. = 0.175000
z 0.175000 EllO

If we assume that the exponent can have a maximum value of 99, then
the result overflows.

Divide the number 0.875000 E - 18 by 0.200000 E95.

-E2=-18-95=-113

Computer Codes and Arithmetic

f2 = 0.875000 ^ 0.200000 = 4.375000
= 4.375000 E - 113
= 0.437500 E - 114

If we assume that the exponent can have a minimum value of - 99, then
the result under/lows.

Subtract 0.499998 from 0.500000.

0.500000
= 0.499998

Ix - f =
Ez 0

Thus, z 0.000002 x 100 = 0.200000 x 10

The result contains only one significant digit. If the values of x and are
not exact, then the result may not reflect the true difference between
them. In many systems, these unspecified digits are filled by arbitrary
digits thus causing a further increase in the error.

LAWS OF ARITHMETIC

Due to errors introduced in floating point arithmetic, the associative and
distributive laws of arithmetic are not always satisfied. That is,

X + (y + z) ;., (x + Y) + z
X (v xz);^(x xy)x2
X x(y+z)s(x xy)+(xxz)

Although failure of these laws to be satisfied affects relatively few com-
putations, it can he very critical on some occasions. The examples that
follow illustrate the discrepancies.

Associative law for addition

Let = 0.456732 x 10 2 ,y = 0.243451, z = 0.248000
(x + y) = 0.004567 + 0.243451 0.2480 18

(x + y) + z = 0.248018 - 0.248000 = 0.000018
0.180000 x iO

(y + z) 0.243451 - 0.248000 = - 0.00454= —0.4549 x 102
x + (y + .r) = (0.456732 - 0.454900) 1()-2

 s 10
Thus,	 (x+y)+zx+(y+z)

fil Numerical Methods

Associative law for multiplication

Let x = 0.400000 x 10,40,y 0.500000 x iO, z = 0.300000 x 10°
(x x y) x z = (0.20000() x 10 11) (0.300000 > 100)

Note that (x x y) causes overflow and so the result will he erroneous.
x x (y x z) =r (0.400000 x 1040) x (0.1500000 x 100)

= 0.060000 x 10 = 0.600000 x 10

This gives the correct result assuming that the exponent can take a
value up to - 99.

Distributive law

Let x 0.400000 x 101 , y = 0.200001 10 0 , z = 0,200000 x 100

x x (y - z) (0.400000 x 101) x (0.100000 x 10)
= 0.400000 x 10

(x x y) - (x < z) - 0.800000 x 100 - 0.800000 / 100 - 0

VA SUMMARY

In this chapter, we have discussed a very important aspect of numerical
computing, namely, the internal representation of numbers in a comput-
er. We considered the following in detail:

• number systems that are popularly used in computing
• conversion of numbers from one system to another
• storage of numbers in the memory of a computer
• different, systems of arithmetic operations that Rre commonly used

in numerical computing
• errors introduced by arithmetic operations
• associative and distributive laws of arithmetic

Key Terms

Associative law
	 Interval arithmetic

Base
	

Mantissa
Binary digits
	 Norm atisa 1/on

Binary numbers
	 Normalised number

Bits
	 Octal numbers

Computer memory	 Overt/ow
Data	 Processing
Decimal numbers	 Quadruplets
Distributive law
	 Radix point

(Contd.)

Computer Codes and Arifhrn2tic

Exponent
Fixed point arithmetic
Floating point form
Floating point arithmetic
Hexadecimal numbers
Integer arithmetic
Integer form

Heal numbers
Sign bit
Storage
Subtractive cancellation
Transistor
Triplets
Underfln '

1. How many binary digits are there? Which symbols are used br
them? What are they usually called?

2. Binary digits are used to store and manipulate data in computers.
Why? Why do then we use other number systems?

3. What is the complement of a number? Obtain the complement of
the decimal number 5749?

4. How do we obtain one's complement and two's complement of a
binary number?

5. What are the uses of complements of binary numbers?
6. What is sign bit? How does the computer store a negative number?
7. An 8-bit register stores numbers in two's complement form.

a) What is the largest positive decimal number that can be
stored?

(hi What is the smallest negative decimal number that can be
stored?

8. Why do we need to represent numbers in exponential form? Ex-
plain how a decimal number is represented inside the computer
using the exponential form?

9. Explain the following:
(a) Overflow
(b) Elnderflow

10. Discuss the errors that may occur during the floating point arith-
metic operations.

11. The hexadecimal equivalent of the binary number 10011101 is
(a) 5A	 (b) FT	 (c) 9D	 (d) 9E

12. The decimal equivalent of the binary number 10011101 is
(a) 27	 (hi 157	 (c) 13	 (d) 144

13. The binary equivalent of the octal number 42 is
(a) 101110	 (b) 111010	 (c) 100010	 (d) 101011

14. The octal equivalent of the hexadecimal number CD5 is
(a) 3625	 (b) 6325	 (c) 3652	 (d) 6352

15. The hexadecimal equivalent of the decimal number 163 is
(a) B3	 (b) A2	 (C) A3	 (d) 93

bQ Numerical Methods

1. Convert the decimal numbers (i) 29, vii) 123, and (iii) 432 to

(a) binary system
(b) octal system
(c) hexadecimal system

2. Convert, the octal numbers (i) 25, (ii) 52, and (iii) 563 to
(a) decimal system
(b) binary system
(C) hexadecimal system

3. Convert the hexadecimal numbers (i) 8F, (ii) BCA, and (iii) AF3D to

(a) decimal system
(b) octal system
(c) binary system

4. Convert the binary numbers (i) 0101, (ii) 0111.0111, and (iii) 1011.11
to

(a) decimal system
(b) octal system
(c) hexadecimal system

5. Assuming that the computer stores each number in a 16-bit memo-
ry location, find the internal, representations of the following num-
bers:

(a) 498
(b) -498

6. Write the following numbers in normalised exponential form and
E-form.

(a) 12.34	 (d) -0.009876
(b)-654321	 (e) 0.0
(c) 0.001234	 (1) 12345

7. Assuming that the mantissas are truncated to 4 decimal digits,
show how the computer performs the following floating point oper-
ations:

(a) 0.5678 x iO + 0.6666 10
(b) 0.1234 x 104 + 0.4455 x 10
(c)0.3366 x 102 -0.2244 x 10
(d) 0.6789 x 102 0.2233 x 10-'
(e) 0.6789 x 102 + 0.2233 x 10

8. Assuming that the mantissas are truncated to 4 decimal digits,
compute the error ii the following computations:

(a) 5.6789 - 1.2345
(b) 5.6789 + 9.2345

9. Illustrate with examples the concept of overflow i'nd underflow.
10. Discuss an example to show that the distributive law of arithmetic

is not always satisfied in numerical computing.

CHAPTER

Approximations and
Errors in Computing

--K-73-INTRODUCTiON

Approximations and errors are an integral part of human life. They are
everywhere.and unavoidable. This is more soin the life of.a.conputaiaI
scientist.

We cannot use numerical methods and ignore the existence of errors.
Errors come in a variety of forms and sizes; some are avoidable, some
are not. For example, data conversion and roundoff errors cannot be
avoided, but a human error can be eliminated. Although certain errors
cannot be eliminated completely, we must at least know the bounds of
these errors to make use of our final solution. It is therefore essential to
know how errors arise, how they grow during the numerical process,
and how they affect the accuracy of a solution.

By careful analysis and proper design and implementation of
algorithms, we can restrict their effect quite significantly.

As mentioned earlier, a number of different types of errors arise during
the process of numerical computing. All these errors contribute to the
total error in the final result. A taxonomy of errors encountered in a
numerical process is given in Fig. 4.1 which shows that every stage of
the numerical computing cycle contributes to the total error.

Although perfection is what we strive for, it is rarely achieved in
practice due to a variety of factors. But that must not deter our attempts
to achieve near perfection. Again the question is: How much near?

In this chapter we discuss the various forms of approximations and
errors, their sources, how they propagate during the numerical process,
and how they affect the result as well as the solution process.

Missing
information impertectiofl

Numerical Methods

Total
error

	

ModellingInherent	 Numerical	 BlundersI
errors	 I	 errors	 errors	 (

rData.1'Coonversion	 Roi.mdoff	 Truncation
I	 errors	 errors	 •. ' I	 errors

Cli

(nnO	 puting')	 C	

errors

u	 om	 jN,,
' method	 "- machine

Fig. 4.1 Taxonomy of errors

SIGNIFICANT DIGITS

Jnow that all computers operate with a flxed length of numbers. In
particular, we have seen that the floating point representation requires
the mantissa to he of a specified number of digits. Some numbers cannot
be represented exactly in a given number of decimal digits. For example,

the quantity iris equal to
3.141026535897932384626...

Such numbers can never be represented accurately. We may write it
as 3.14, 3.14159, or 3.141592653. In all cases we have omitted some
digits.

Note that transcendental and irrational numbers do not have a
terminating representation. Some rational numbers also have a
repeating decimal pattern. For instance, the rational number 2/7 =
0.2857 14285714.... Suppose we write 2/7 as 0.285714 and .'r as 3.14159.

Then we say the numbers contain six significant digits.
The concept of significant digits has been introduced primarily to

indicate the accuracy of a numerical value. For example, if, in the number
y = . 23.40657, only the digits 23406 are correct, then we may say that v
has five significant digits and is correct to only three decimal places.

In general, when a number is said to be "good to four digits", it means
that the number has four significant digits. The omission of certain
digits from a number results in what is called ro it ndoff error. The Iollowing
statements describe the notion of significant digits.

Approximations and Errors in Com puting 63

non-zero digits are significant.
\2(AJl zeros occurring between non-zero digits are significant digi

t
s-

4/ zeros following a decimal point are significant. For example,
,250, 65.0 and 0.230 have three significant digits each.
Zeros between the decimal point and preceding a non-zero digit are

not significant. For example, the following numbers have fir

significant digits.
0.0001234 11234 x 10-7)

J

0001234 (1234 x 10)

0.01234	 (1234 x 10)
When the decimal point is not written, trailing zeros are not
considered to be significant. For example, 4500 may be written as
45 x 102 and contains only two significant digits. However, 4500.0
contains four significant digits. Further examples are:

	

7.56	 has three significant digits.
7.560 x104 has four significant digits.
7,5600 x 10 has five significant digits.

Integer numbers with trailing zeros may be written in scientific notation
to specify the significant digits.

The concept of accuracy and precision are closely related to significant
digits. They are relate 	 follaiia

Aciireersto the number of significant digits in a value. For
example, the number 57.396 is accurate to five significant digits

2. Precision refers to the number of decimal positions, i.e. the order of
magnitude of)rC1ast digit in a value. The number 57.396 has a
prccisionpfU.001 or 10.

Wh1i of the following numbers has the greatest precision
(a) 4.3201	 (h) 4.32	 (c) 4.320106

(a) 4.3201	 has a precision of 10
(b) 4.32	 has a precision of 10
(c) 4.32010-1s a precision of 10

The last nuipbr has the greatest precision
1

tht is the accuracy of the following numbers?
(a) 95.763 (b) 0.008472 (c) 0.0456000 (d) 36_)e) 3600 U) 3600-00

(a) This has five sd.
(b) This has four ad. The leading or higher order zeros are only place

holders.
(c) This has six sd.

64 Numerical Methods

This has two sd.
e) Accuracy is not specified.
(f) This has six d: Note that the zeros were made significant by writing

.00 after 3660.

INHERENT ERRORS

Kereni errors are those that are present in the data supplied to the
model. Inherent, errors (also known as input errors) contain twc
coinponent, namely, data errors and corlrersion errors.

/,Dq 'Errors
error (also known as empirical error) arises when data for a problem

are obtained by some experimental means and are, therefore, of limited
accuracy and precision. This may be due to some limitations in
instrumentation and reading, and therefore may be unavoidabil A
physical measurement, such as a distance, a voltage, or a time period,
cannot he exact. It is, therefore, important to remember that there is no
use in performing arithmetic operations to, say, four decimal places
when-the original data themselves are only correct to two decimal places
F'instance, the scale reading in a weighing machine may be accurate/ only no decimal place.

9&version Errors
/"Conversion errors (also known as representation errors) arise due to the

flmitcttions of the computer to store the data exactly. We. know that the
floating point representation retains only a specified number of digits.
The digits that are not retained constitute the roundofT erro

As we have already seen, many numbers cannot be represented exactly
in a given number of decimal digits. In some cases a decimal number
cannot be represented exactly in binary form. For example, the decimal
number 0.1 has a non-terminating binary form like
0.000llO011O011O011 but the computer retains only a specified number
of bits. Thus, if we add 10 such numbers in a computer, the result will
not be exactly 1.0.3tcausc of roundoff error during the conversion of 0.1
to binary form,

Rpesent the decimal numbers 0.1 and 0.4 in biriai-y form with an
accuracy of 8 binary digits. Add them and then convert the result back
to the decimal form

0.0001 1001
O^ 10 = 0.0110 0110
SUM =0.01li lilt

Approximations and Errors in Computing

= 0.25 + 0.125 + 0.0625 + 0.03125 + 0.015625
+ 0.0078125 + 0.00390625

= 049609375
Note that the answer should he 0.5, but it is not. This is due to the error
in conversion from decimal to binary form. Remember, both the numbers
have non-terminating binary representation.

Error is equal to 2 0.00390625. It is clear that the error can be
reduced by increasinge.-5jhary digits that represent the number. For
example, if we us1its, then the error will be equal to 2-' = 0.15258789i0-.

NUMERICAL ERRORS

'nerjcaLerrw (also known as procedurcil errors) are iUtrQdumd during
the process of implementation They coriiejntwo
forms, on-d e.rmrs and truncation errQrs. The t mimeiical error
is til ioesewoerrors The total error can be reduced by
devising suitable techniques for implementing the solution. We shall see
in this section the magnitude of these errors.

off Errors - -

OUnd Off errors occur when a fixed umber of d
exacumbc .s§jtice the iiunibers are stored at evejLstage of
amputation ioundufl error is introduced at the end of every arithmetic

oPeratrnncons Try ; venthoiigh an individual roundoff error could
be Fy sdiajl, the cumulative affect of a series of computations can be
very significant.

Roundingajmber can be done in two 	 One is known as chopping
and the othey.is known as 	 round	 Some systems use the
choppinrthod while others use s ymmetric rounding.

Mpping
/

Jn chopping, the extra digits are. dropped. This is called truncating the
number. Suppose we are using a comppter with a fixed word length of
four digits. Then a number 	 be stored as 42.3-, and the
digits 93 will be dropped. We can express the number 42.7893 in floating
point form as

= 0.427893 > 102

(0.4278 + 0.000093) x 102

= I0.4278 ± (0.93 10)] x 10
This can be expressed in general form as

True -r (f +	 10 d>1Ohl'

=f x 10E _g x

approximate x + error.

Numerical Methods

where f is the mantissa, d is the length of the mantissa permitted and E

is the exponent. In chopping, g is ignored entirely and therefore,

Error =g. x 10g ci , 0 S g < 1

The absolute error introduced depends on the following:
1. the size of the digits dropped
2. number of digits in mantissa
3. the size of the number

Since the maximum value of g is less than 1.0,

Absolute error	 0E- d

Symmetric Roundoff
I.YC the symmetric roundoff method, the last retained significant digit is
"rounded up" by 1 if the first discarded digit is larger or equal to 5;
otherwise, the last retained digit is unchanged. For example, the number
42.7893 would become 42.79 and the number 76.5432 would become
76.54.

As before, the value of unrounded number can be expressed as

True x=fx 10 +gx 10Ed

When g < 0.5, entire g is truncated and therefbre,

Approximate x = f1 x 10R

and
Error =	 g. <0.5

When g	 05, the last digit in the mantissa is increased by 1 and
therefore

Approximate x = (f + 10-d) x 10 rr _—f 'c lwP
 + itr

Error = [f x iO	 lf x l +

_l)xl d) g^!0.5

In either case, lO	 is multip ie by factor whose absolute value is no
greater than 0.5. Therefore, the value of the absolute error is

FAbsolute error :5 0.5 x 10E 1
Note that the symmetric rounding error is, at worst, one-half the chopping
error.

Sometimes a slightly more refined rule is used when the g is exactly
equal to 0.5. Here f is unchanged if its last digit is even and is increased
by 1 if its last digit is odd.

the roundoff error in storing the number 752,6835 using a four
digit mantissa.

True x = 07526 x jjD3 +0. x 10

Approximaofls and Errors In Computing

Chopping method
Approximate x = 0.7526 x 103

Error 0.0835
SynrnLric rounding

ErrorIT
-0,165 x 10-1 - 0.0165

Appdite x 0.7527 x 103

ii6atIon Errors '\A7'
'fruncation errors arise from using an approximation in place of an exact
mathematical- procedure) Typically, it is the error resulting from -the
truncation of the numerical process. We often use some finite number of
terms to estimate the sum of an infinite series. For example,

S -a i x 1 is replaced by the finite sum >a1 x
j.Jl	 iO

The series has been truncated.
Another example is the use of a number of discrete steps in the solution

of a differential equation. The error introduced by such discrete
approximations is also called di.scrctisation error. Consider the following

infinite series:

xa x s x7
- --I--	 T

When we calculate the sine of an angle using this series, we cannot
use all the terms in the series for computation. We usually terminate
the process after a certain term is calculated. The terms "truncated"
introduce an error which is celled truncation error.

Many of the iterative procedures used in numerical computing are
infinite and, therefore, a knowledge of this error is important. Trunca-
tion error can be reduced by using a better numerical model which
usually increases the number of arithmetic operations. For example, in
numerical integration, the truncation error can be reduced by increasing
the number of points at which the function is integrated. But care should
be exercised to see that the roundoff error which is bound to increase
due to increase in arithmetic operations does not off-set the reduction in
truncation error.

We often use library functions to compute logarithms, exponentials,
trigonometric functions, hyperbolic functions, and so on. In all these
cases, a series is used to evaluate these functions. It is important to
know the truncation errors introduced by these library functions.
Truncation errors are discussed in detail in many places in this book.

Numerical MelhQds

truncation error in the result of the following function for
x = 1j5 when we use (a) first three terms, (b) first four terms, and
(c) first five terms.

	

4	 x 5 	x 6
e r=I+i:

21	 3!	 4!	 5!	 6!
(a) Truncation error when first three terms are added

	

x 3 x 4 x	 x6	Truncation error -1- -- +	 +	 +

0.2 3 _
f- 0.2 + 0.2 + 0.26-

	

6	 24	 120 720
= 0.1402755 10

(b) Truncation error when fir7(;ir terms are addedrfjctj	 erroi= 0.694222 iO
(c) Truncation err when first five terms are added

Tnincatfon error = 0.275555 >: 10'

Stie above exam p1e for x-1/5

X2	 x :J	 x 4	 x '	 x5
C

2!	 3!3!	 4!	 5!	 6!

	

o.2io2+ 0.22U.2 	 1	 0.25 	 P:
2	 6	 24	 120 720

(a) Truncation error (three terms) = - 0.1279255 x 102

(b) Truncation error (four terms)	 + 0.6665556 x

(c) Truncation error (five terms) = - 0,257777 > 10
Note that

IT.E.11

IT.E. 5 1 <

-	 Approximations and Errors in Computing

ODELUNG ERRORS

mathematical models are the basis for numerical solutions. They are
formulated to represent physical processes using Certain parameters
involved in the situations. In many situations, it is impractical or
impossible to include all of the real problem and, therefore, certain
simpliing assumptions are made. For example, while developing a model
for calculating the force acting on a falling body, we may not be able to
estimate the air resistance coefficient (drag coefficient) properly or
determine the direction and magnitude of wind force acting on the body,
and SO on. To simplify the model, we may assume that the force due to
air resistance is linearly proportional to the velocity of the falling body
or we may assume that there is no wind force acting on the body. All
such simplifications certainly result in errors in the output from such
models.

Since a model is a basic input to the numerical process, no numerical
method will provide adequate results if the model is erroneously conceived
and formulated. It is obvious that we can reduce these type of errors by
refining or enlarging the models by incorporating more features. But the
enhancement may make the model more difficult to solve or may take
more time to implement the solution process. It is also not always true
that an enhanced model will provide better results. We must note that
modelling, data quality and computation go hand in hand. An overly
refined model with inaccurate data or an inadequate computer may not
be meaningful. On the other hand, an oversimplified model may produce
a result that is unacceptal)klt is, therefore, necessary to strike'a balance
between the level of accuracy and the complexity of the model. A model
must incorporate,oily those features that are essential to reduce the
error to an acçetable level-

BLUNDERS

—

ders are errors that are caused due to human imperfection. As the
Iindicates, such errors may cause a very serious disaster in the

result. Since these errors are due to human mistakes, it should be possible
to avoid them to a large extent by acquiring a sound knowledge of all
aspects of the problem as well as the numerical process.

Human errors can occur at any stage of the numerical processing
cycle. Some common types of errors are:

1. lack of understanding of the problem
2, wrong assumptions
3. overlooking of some basic assumptions required for formulating the

model
4. errors in deriving the mathematical equation or using a model that

does not describe adequately the physical system under study

ZQ Numerical Methods

5. selecting a wrong numerical method for solving the mathematical
model

6. selecting a wrong algorithm for implementing the numerical method
7. making mistakes in the computer program, such as testing a real

number for zero and using < symbol in place of> symbol
8. mistakes in data input, such as misprints, giving values culunmn

wise instead of row-wise to a matrix, forgetting a negative sign, etc.
9. wrong guessing of initial values
As mentioned earlier, all these mistakes can be avoided through a

reasonable understanding of the problem and the numerical solution
methods, and use of g9 progr amming techniques and tools.

AND RELATIVE ERRORS

Let us-'now consider some fundamental definitions of error analysis.
RegrdIess of its source, an error is usual!v auantified in two differe
but related ways One is flown as "bso'ritc error an t e other is called
relatiue error.

that the true value of a data item is denoted by; and
its approximate value is denoted by;. Then, they are related as follows:

True value .r, - Approximate value x + Error.
The error is then given by

Error = x, —;

The error may he negative or positive depending on the values or ; and
;. In error analysis, what is important is the magnitude of the error
and not the sign and, therefore, we normally consider what is known as
absolute error which is denoted by

=X, —
In many eases, ab1utrroay not reflect its influence correctly as it
does not take into account the order of magnitude of the value under
stud y. For example, an error of I grain is much more significant in the
weight of a 10 gram gold chain than in the weight of a bag of rice. In
view of this, we introduce the concept of relative error which is nothing
but the "normalised" absolute error. The relative error is defined as
follows:

er absolute error
true	 ueI

a1
Nxl

More often, the quantity 	 ttkWotausjs x0 and, therefore, we can
modify the above relation as follows:

Approximations and Errors in Computing 71

XtXa = 1– XE
—

	

XU	 Xa

The fractional form of er can also be expressed as the per cent relative
error as

cent Cr = er x 100

4	 -
Aciilnrrneer has measured the height of all) floor building as 29,50
cm and the working height of each beam as 35 cm while the true values
are 2945 cm and 30 cm, respectively. Compare their absolute and rela-
tive errors.

Absolute error in measuring the height of the building is
e j = 2950 - 2945 = 5 cm

The relative error is'
Cp) '= 5I945 0.0017 = 0.17%

Absolute error hi measuring the height o f' e beam is
e2=35-30cm

The relative error is,
Cr'	 0.17	 17

Although the absoluteprrbrs are the same, the relative errors differ by
100 times. It showMat there is something wrong in the measurement
of the height , . e beam. it should be done more accurately.

^MAC^HINEEPSILON

Recall that the round off error introduced in a number when it is repre-
sented in floating point form is given by

	

Chopping error =g x 10E-d	 0 ^g< 1
where g represents the truncated part of the number in normalised
form, c/is the number of digits permitted in the mantissa, and F is the
exponent. The absolute relative error due to chopping is then given by

gxiOEd
ri

fx lo b' t

The relative error is maximum when g is maximum and / is minimum.
We know that the maximum possible value of g is less than 1.0 and
minimum possible value of f is 0.1. The absolute value of the relative
error therefore satisfies,

22 Numerical Methods

LOx 10E-d ^

e <----_1d-1
O.lx 10

The maximum relative error given above is known as rnachinr epsilon.
The name "machine" indicates that this value is machine dependent.
This is true because the length of mantissa d is machine dependent. For
a decimal machine that uses chopping,

Machine epsilon s = 10' *

Similarly, fbr a machine which uses symmetric roundoff,

0.x10' =_x10*1
j

X 101	
2

and therefore

Machine epsilon e A x 10 '

It is important to note that the machine epsilon represents upper bound
for the roundoff' error due to floating point representation. It also sug-
gests that data can ho represented in the machine with d significant
decimal digits and the relative error does not depend in any way on the
size of the number.

More generally, for a number x represented in a computer,

Absolute error bound = I x c

For a computer system with binary representation, the machine epsi-
lon is given by

Chopping
Machine epsilon 8

= 2-d + 1

Symmetric rounding
Machine epsilon e = 2

Note that we have simply replaced the base 10 by base 2. Here d
indicates the length of binary mantissa in bits.

We may generalise the expression for machine epsilon for a machine
which uses base b with d-digit mantissa as follows:

= b x b for chopping
= b12 x h for symthetric rounding

a computer uses a number base 2, Dow many significant decimal
dIgits are contained in the mantissa of flting numbers?

Assume that the binary computer has p-bit mantissa. Then the error
bound is 2. This computer will have q significant.digits with symmetric
rounding, if,

Approximations and Errors in Computing

1/2 x 10-9 + 1

Taking logarithms to the base 10, we get
q 1 + (p - 1) log10 2

If we assume p = 24, then
q 1 + 23 log 10 2 7.9

We may say that the Qoarputer can store numbers with seven significant
decimal digits.

^7w ERROR PROPAGATION

Numerical computing involves a series of computations consisting of
basic arithmetic operations. Therefore, it is not the individual roundoff
errors that are important but the final error on the result. Our major
concern is how an error at one point in the process propagates and how
it effects the final total error. In this section, we will discuss the arith-
metic of error propagation and its effects.

Addition and Subtraction
Consider addition of two numbers, say, x and y.x t + y 1 x + e + Y. +

	

= (Xa +	 + (e +

Therefore,

Total error —e...^ =e +

Similarly , for subtraction

rTotal error =e. Y = e,

Note that the addition e + e does not mean that error will increase in
all cases. It depends on the sign of individual errors. Similar is the case
with subtractions.

Since we do not normally know the sign of errors, we can only esti-
mate error bounds. That is, we can say that

	

Ie1	 !^ j ej + ej
Therefore, the rude for addition and subtraction is: the magnitude of

the absolute error of a sum (or difference) i,s equal to or less than the sum
of the magnitudes of the absolute errors of the operands.

This inequality is called the triangle inequality. The equality applies
when the operands have the same signs, and the inequality applies if
the signs are different.

Multiplication
Here, we have

xt X y U. +	 x (y + e) = x.y. + y,1e1 + xGe + ee

74 NumerIcal Methods

Errors are normally small and their products will be much smaller.
Therefore, if we neglect the product of the errors, we get

X Yt X0Ya + xey +
X)' + XaYa	 + e,Iy0)

Then,

Total error -	 =

Division

We have

.L_ ;
Yt	 YL +e

Multiplying both numerator and denominator by y - e and rearranging
the terms, we get

xt X aYa + y aex —x0e_—e

Yt	 y2 — e2a	 y

Dropping all terms that involve only product of errors, we have

- x. y. +Y,e, - Xa ey

Yt	 y,

X,	 X, e.

Y.	 Ya (X a	 A-,

Thus,

X IL'.	 e
Total error =e,,Iy=	 t

L	
Yala y0

Again applying the triangle inequality theorem, we have

ex,y4
1h- ±

^ e.

i Ya 1X0	 y

1Ie.	 I	 Ie	 !
e, 15 IX 	 H+I—1

Ix	 IYa I)
Note I
The initial errors e and ey may be of any type. They may be

1. empirical errors introduced in the measuring process
2. roundoff errors introduced in conversion
3. roundoff errors introduced due to arithmetic operations in the pre-

vious step, if; and Yt represent some intermediate results

Approximations and Errors In Computing Z

4. truncation errors, if x and y represent the result of evaluation of
infinite series

5. any combination of the above
Note 2
The final errors (after arithmetic operations) e , - , e and are
expressed in terms of only e1 and ey and do not contain the roundoff
errors introduced by the operations themselves. This results from the
need to store the result in floating point representation, Therefore, we
must add the roundoff error introduced in doing the operation in each
case. For example,

=ex + e +

Now, we can have relative errors for all the four operations as follows:

Addition and Subtraction

±	

e I +Je

-

J X11—he 1+
Ya

X.
±Ya

'Ier,yI

Multiplication and Division

L r , xy =kr,x.I4ier,11

(',x

Etieiate the relative error in z = x - y when x = 0.1234 x 104 and
Y = 0.1232 x iO as stored in a system with four-digit mantissa.

We know

1eX 1 + 1 P,
e..

Ix - yi

Since the numbers x and y are stored in a four-digit mantissa system,
they are properly rounded off and therefore,

je 1 I	 10' =0.05%

Ie r ! ^x10 =0.05%

Then
e = 0.1234 x 10 x 0.5 x 10" = 0.617
P

.7
	 0.1232 Y io' ' o	 0.616

Z Numerical Methods

Therefore
1e21 -_^ IeI+ IeI = 1 . 233

]:233x10

0.1234 -- 0,1232]

Although the relative errors in x and y are very small, the relative error
in z is very large. If we use this result as an input to further calcula-
tions, the final result will be disastrous. The error due to subtraction of
two nearly equal numbers is known as subtractive cancellation.

Rules for error propagation discussed above can also he derived using
the concepts of differential calculus. We will find this approach more
convenient when we deal with complex functions. For example, consider
a power function

w =
Error Aw = n' -

Relative error,
Cru = n. x Ax/x. = fl X e,,.,

The relative en-or in w is n times the relative error in x.

Sequnce of Computations
'have seen how errors in the operands propagate to the result of an
operation. As we know, the computer can do only one operation at a
time. It performs a sequence of operations in order to evaluate eyen a
simple expression; such as

W = x2 + y/z

In such cases, the result of one operation is stored in the machine in the
floating point form before it is used as an input- for the next operation.
At each stage of computation, a roundoff error is therefore introduced in
the result before it is used again. Thus, each stage becomes a source of
new errors. This is illustrated in Fig. 4.2, for evaluating the above ex-
pression. The intermediate value ii. contains the propagated error due to
error in x and its own roundoff error r 1 . Similarly, v contains the propa -

gated error due to errors in y and z and also the roundoff error r.
Finally, w contains the propagated error due to errors in it and v and the
roundoff en-or r3.

Roundoff error

-51----

Roundoff error
rig. 4.2 Block dingrom for evaluation of x 2 + y/z

Approximations and Errors in Computing 72

Find tØso)ute error in w = xy + z if 	 2.35, y = 6.74 and s = 3.45

x. = 2.35, e1 0.005j2.35	 0.01175

= 6.74. e = 0.00516.741 	 0.03370

z. = 3.45, e	 0.006 13,461 = 0.01725

= Ix e. + I' Ic

= 2.35 x 0.03370 + 6.74 x 0.01175 = 0.15839

= Iel + 1e2 1 	 0.15839 + 0.01725 = 0.17564

Addition of a Chain of Numbers
As we pointed out earlier, many standard mathematical ideas do not
hold good in computer arithmetic. One such case is the floating point
addition. In computer arithmetic, the floating point addition is not a!-

ways associative. That is,
x +y +z z +y +x

Tha examples 4.11 and 4.12 illustrate this rule.

Li
Evawite a, , -: x * z, where x = 9678, y = 678 and z = 78. Remember,
the computer performs arithmetic operations one at a time and from left
to right. We assume that there is no inherent error (for the sake of
simplicity) in x, y and z and the length of mantissa is four.

Let u = x + y
Then,

u = 0.9678 x 104 + 0.0678 x 104 = 1.0356 x io

w = u + z = 0.1035 x 10 + 78

	

= 0.1035 x 105 + 0.0007	 10

= 0.1042 x 10 = 10420

True w = 10444

24

erw = 2.3 x

Evaluate w = z + y + x using the data in the above example.

Here,	 u = 78 + 678 = (0.078 + 0.678)10 = 0.756 x lO

Ui U + X

Z8 Numeilcal Methods

0.0756 x 10' + 0.9678 x 104 = 1.0434 x iø
0.1043 x 10 = 10430

True w = 10444
= 14
= 1.3 x 10

Examples 4.11 and 4.12 show that the errors are not the same in both
the cases. It also shows that the error is less when the numbers are
arranged in the increasing order of their magnitude. See Example 4,13
for a more general proof.

Prove tnat the procedure w 1 = (y + z) + x is better than the procedure
w2 =(x+y)+zwhe.n I XI > 1'1 > fz

(a) Procedure w 2 = (x + y) + z

Let u = x + y

Then,	 er, L, ------e x +Cr +r
x+y '	 x+y

where r 1 is the relative roundoff error introduced at this stage.

Cr 	 = U e,. +	 L	 + r2.,-	 u-1z '	

2

u+z

I
'T	 r,y	 +r2

+ ye r,y +z'e r,j +(x+y)r 1 +(x+y+z)r2]

where S = x + y + z
Now, let us use

R 1 = max (I e 	 le, , 3. I ' k'r,z)	 R2 = Max (V1 1, 1 r2 I)

Then, we get

epw2 ={x+y+zR i +(2x±2y+z)R2J

e 2 =(x +y +z)I? +(2x + 2y +z)1?9

If we further assume that R 1 and R 2 are only due to conversion, then
R = R 1 = R2 e 2 = (3x + 3y + z)R

Approximations and Errors in Compuling Z2

(b) Procedure w 1 (y + z) + x

Similarly we can show that e, 1 = (3z + 3y + x)R
Comparison

eW2= (ax +3y+z)R=(3x+3y+3Z_)fl_(3_)

Since x>z,
Therefore, the procedure w 1 = (y + z) + x gives better results than the
procedure w2 = (x + y) .,- z.

Polynomial Functions
Suppose we wish to evaluate a function fix) where f is differentiable and
the approximate value x of x is given. In such cases, we can estimate
the error bound in fix) using the meaa-oaiwe theorem of calculus.

According to this theorem,

fix) - fiXa) = (X - x,)f'(0)

where 8 is some value between x and x,, and f' is the first derivative of
the function f. Then the error in fix) is

ef= l Ax) _/Xa)I =

Since the value of 0 i unknown, we take the maximum off (67) in the
interval for estimating the hound for e 1. Then,

er:semax If '(61)1

This means that we have to evaluate the function f'(O at variousvalues of 8 and find the upper bound. This is sometimes a difficult task.
Normally, the error ex is small and, therefore, we can make a reason-

able approximation as follows

[f'(Xa)
Note that this e1 does not include the errors that occur during the evalu-
ation of the function itself due to Conversion at various stages.

........

Estimate the absolute and relative errors for the function

flx)= -	 +x for x,,, = 4.000
We assume that x is correct to four significant digits. Then

= 0.0005)< 10F

f'(x)
1 -LC	 1=-x	 +1=.,/^1

Q Numerical Methods

f'(Xa)	 + 1 = 1.25

Then
e1 = 5 x 10 x 125 6.25 x 10

e r	 6.25x10
ef=

Ax .)	
104 x

The mean-value theorem approach can be readily extended to functions
with more than one variable., using partial derivatives. For functions
with two variables, x and y, we have

etexf(x,ya)cyfy(,ra,y)I

wheref andf denote partial derivatives with respect to x and y

Estimate the error in evaluating ft, y) =x 2 +v2 for = 3.00 and = 4.00

We assume that
e = e = 0.005

f(x, y) = 2x and f(x, y)

Therefore,
ef = 2x + 2.y C

x 300 + 2 x 4.00) x 5 x 10 = 0.07

4d .cONDITIONING AND STABILITY

We k dw that uncertainties exist in all stages of numerical processing.
e ye discussed in detail how these uncertainties, particularly roundoff

errors, are introduced at various stages and how they are propagated
during the evaluation of an expression or implementation of a numerical
method. Induced errors such as rouridoff errors accumulate with the
increasing number of computations in a process. There are situations
where even a single operation may magnify the roundoff errors to a level
that completely ruins the result. A computation process in which the
cumulative effect of all input errors is grossly magnified is said to be
numerically unstable. It is, therefore, important to understand the con-
ditions under which the process is likely to be "sensitive" to input errors
and becomes unstable. Investigations to see how small changes (or per-
turbations) in input parameters influence the output are termed as sen-
sitivity analysis.

Numerical instability may arise due to sensitivity inherent in the
problem or sensitivity of the numerical method (or algorithm). This is

Approximations and Errors in Computing IM

illustrated in Fig. 4.3. As we know, a mathematical model can be solved
either by analytical methods or by numerical methods In either ca8e,
when a small disturbance in an input parameter (known as in,herzt
error) causes unacceptable amount of error in the output, we say
the problem is inherently unstable. Such problems are said to be ilL.
conditioned. When a problem itself is sensitive to small changes in its
parameters, it is almost impossible to make a numerically stable method
for its solution.

(Model

Sensilvtiy.;	 _'
of poblerw

Analytical
solution

Changes in	 Numerical
Input data	 instability

Numerical
solution

Sensitwit', of
nurfleiiaI method

Induced error

Fig. 4.3 Instability of numerical process

The term "condition" is used to describe the sensitivity of problems or
methods to uncertainty. Let us suppose we are evaluating a function fix)
and a small change in x produces a change in fix). We can quantify the
condition of this function by a number called condition number which is
defined as follows:

Condition number = relative error inf(x)
relative error in x

The relative error in fix) is

'	 f'(x)ix
- f(x)	 f(x)

The relative error in x is
Lx-
X

32 Numerical Methods

Then

Condition number - xf'(x)

- f

The condition number provides a measure of extent to which an error in
x is magnified in fix). If the condition number is large, then the function
fix) is said to be ill-conditioned and its computation will be numerically
unstable. There are different situations when a problem can have a
large condition number,

1. small fix) compared to x and f(x)
2. large f'(x) compared to x and I(x)
3. large x compared to fix) and f'(x).

When several parameters are involved, we may have instability with
respect to some parameters and stability with respect to others. In such
cases, we should use the partial derivatives to estimate the total change.
That is,

Axl +	 Ayj + J y AzI i

Show at the following system of equations is ill-conditioned for corn-
41utg the point of intersection when m 1 and rn9 are nearly equal.

.11= rn 1x + C1
y = rn + C2

Solving the equations for x and y we get

X
C 1 _C2=
m2

I
C1 —C2 1

+C 1y=m 1 x	
l - n1J

Let us assume that C 1 7.00, C = 3.00, m 1 = 2.00 and m2 2.01. Then

7-3
x4002.012.00

Y 2.00 x 400 + 7= 807
Now, let us change the value of m 2 from 2,01 to 2.005. Then

7-3
X	

8002M05-2.00

y = 2.00 x 800 + 7 = 1607
It shows that a small change (0.25 per cent) in the parameter rn 2 results
in almost 100 per cent change in the values of x and y. Therefore, the
problem is absolutel y ill-conditioned.

Approximations and Errors in Computing

Compute and interpret the condition number for

fIx) =,j(x-1)

f'(x) = x (x - 1) -1/2

xf'(x)	 (x-1)12

	Condition number - - 	 -
f(x) = 2 - Cx	 1)1i2

2;

2(x- 1)
The function is numerically unstable for the values of x close to I.
Note that the term "ill-conditioned" is ill-defin . rd. If we are to take float-

ing point seriously then we should say "relatively small changes" and
"relatively large changes".

If the ill-conditioned effect is present in the original physical system
itself, then there is nothing that we can do to achieve numerical stabili-
ty. In many instances, the ill-conditioning arises from mathematical
formulation of the problem. In such cases, the instability may be re-
moved by reformulating the mathematical models. For example, consid-
er the quadratic equation

+ bx + c 0.
We know that the two roots are

	

2a	 -	 2a

When b 2 >> 4ac,f -4aAr will be very close to b and therefore, when b

is positive, the expression for x 1 may have the effect of subtractive can-

cellation. Here, we can reformulate the formula for X j as follows:

-- b+fb 2 4ac -b-f4ac
xi	

- b --[

-2c

h+—ac

If b is negative, we must perform the same operation for x2.

Another approach to the same problem is to change the algorithm of
calculating x 1 and x2. First find the larger root from the formula

b±jT
1	 2a

and then find the smaller root from the relation
= c/a

84 Numerical Methods

Compute the difference of square roots of two numbers x = 497.0 and
y = 496.0.

Assume x and y are exact. Assuming a mantissa length of 4,

0.2229 x 102

=	 = 0.2227 x 102

= 0.0002 x 10 2 0.02
Let us try another approach by rearranging the terms as follows:

z	 x _.Y
Ix +

=	 = 0.2244 x 10 1 = 0.02244
0.4456x 102

The correct answer is 0.02244. This shows that by rearranging the terms
we improve the result.

FxamØ419
Suges.t an algorit:lun to compute the binomial co-efficient.

(a - p

A simple algorithm to calculate B is to find the factorials ii!, (n -- r)! and
r! and combine them to get B. That is,

F1

where F1 n!, I2 = in - r)! and F.1 =

The problem with this algorithm is that when it is large, the factorial n!
may be too large for the computer to store and thus, may result in
ov:rflow error. This problem can be overcome b y i nodfyiig the algo-
rithm as follows:

B =(-° 1=1_-). ±i±
r;	 r — I}

B=nfor r=l

This can be expressed recursively as

r
Bflfl

This algorithmalgorithm will compute B without causing an overflow error unless
the final answer itself is too laren.

Approximations and Errors in Computing

Reformulate the following expressions to avoid loss of accuracy due to
subtractive cancellation.

(a) x -	 1 for large x

1- ens x
(b) .	 for small x

Sill x

(a)flx)=x_x2_1=X -(x 2 -1)	 1

x+-1 7 -1 	x--'--1

(h) ft-) 1-- Cos x (1- Cos x)(1+cosx)
= ------- = ----- _____- --

smx	 sin x(1+ Cos x)

sin -9 - sin
sin x (1 + cos x) I + cos x

Even when the problem is formulated in a reasonable way and the input
data is accurate, the method of solution may make the process unstable.
For example, in a step-by-step algorithm where we use an interval h to
increment a variable, the error may increase if h is decreased (or in-
creased beyond some limit). If such induced errors are large, then our
method of solution may exhibit what is known as induced instability.
Another example is the "pivoting" technique used in solving simulta-
neous linear equations (see Chapter 7). Here, pivoting cait make a well-
conditioned system into an ill-conditioned one, if proper care is not tak-
en in the design of algorithm.

Show that the series 	 ex l- ix

becomes unstable when x = -10.

The series can be represented as

S(x) =

where

-

'l is the truncation error.
For -1 <x < 1, Tj decreases as i increases, but for large values of Ix J, T
will grow in magnitude until the factorial in the denominator dominates,
when once again T will decrease in size. When x = -10, we have:

& NumercaI Methods

T0	 I
T.	 —10

'2	 50

T.	- 166.60767
T 1	 410.60767

1388.8888...
Assuming a six-digit mantissa machine, the roundoff errors in repre-
seote 	 'rge values of T, will he of greater magnitude than to fal

.1..	 1 J	 x 10-1 itself. Therefore, the routidoff erm:
--ted :2lLltion. The !schod h'cr -I:.r

known as the range recittCLloti schauie for x. \\e know that

Thus,

e10 =	 = ((eM5)2)10

CONVERGENCE OF ITEk. -JIVE PROCESSES

As pointed out earlier, most of the numerical computing processes are
iterative in nature. We start with an approximate value of the solution
and compute iteratively the next approximate. 'al uc till the difference
between two consecutive values is negligible or wjthin a specified limit.
The number of iterations required to reach the given limit depends on
the rate at which the iterates converge to the result.

Suppose that x,, z = 0, 1, 2,,.. is a sequence of iterates and x is the
expected value of .r Let e, be the error in the it-crate x,. Then

C" =x, — x	 for each

We would like the iterates to converge to x and this would happen if
the numerical process is stable. The process is said to converge if there
exists positive constants p and c such that

eit
Inn	 = C

(e1)

The constant p is known as the ord'r of eo7.ee/,tceTlte and c k	 as
a.svrnptotLc con n'rgcnce focte.r. This shows that. f 'un error in x, is
proportional to the pth power of the error in x, (i.e. the pre cus itorate(,
then tue iterative riwt.hod is said to be of oriler of p. It is ciesr that tlic
Inglier the order of iteration. mure ranicl is the ru,e 0/ ron ergenoe.

The rate of converen2e is a measure of how fast the truncation error
goes to zero. This measure is used for comparing various iterative

Approximations and Errors in Computing 7

methods. The rate of convergence is expressed in different ways. For
example, if the method converges like h2 , the order of convergence is .N2,
and so on. It means the value of p is 2. We shall consider the rate of
convergence in detail when we discuss the iterative methods later.

ERROR ESTIMATION

It is now clear that it is almost impossible to know the exact error in a

computed result. Nevertheless, it is possible at least to have some e-
mate of the error in the final result. There are three approaches that are
popularly used in error estimation:

1. forward error analysis
2. backward error analysis
3. experimental error analysis
In forward error analysis, we try to estimate error bounds in the

computed result using information such as uncertainties in the input
data and the nature and number of arithmetic operations involved in
the computing process. We can estimate the contribution due to

1. errors in the input data
2. roundoff errors in arithmetic operations
3. truncation of the iterative process
4. errors in formulation of the model
For example, we have seen in section 4.9 that the total error of a sum

of three values is given by
e!^(x +y +z)R 1 +(2x + 2y +z)R0

where

R2=max({r111 Irci)
rfl.iis can be easily generalised for addition of n values:

e !^ [(i + x2 + ... + x)JR + [(n - 1)x 1 + (n - 1)x2

+ (it —2)x3 + ... +2x,1i-xlR2

R 1 ±x +R 2 (n - 1) x i +
i=1	 L	 i=1

Similarly, we can estimate bounds for product of n numbers.
Error estimated through forward analysis is always pessimistic and is

often much higher than the actual error.
In backward error analysis, we try to show that the computed results

satisfy the problem within the given bounds. For example, we can put
back the roots computed in the equation and see to what extent they
satisfy the original equation. By comparison, we can then decide on how
much confidence we can place in the computed results. Backward analy-
sis is usually easier to perform than forward error analysis.

jA Numerical Methods

Experimental era-or analysis involves a series of experiments by using
different methods and step sizes and then comparing the results. We
may also perform sensitivity analysis to see how any change in parame-
ters affects the result.

When the application is very critical in nature (such as space and
defence applications) the problem may be solved by more than two inde-
pendent specialists groups and the results can bebe compared.

.'4.1J MINIMISING THE TOTAL ERROR

Assuming that the mathematical model has been properly formulated
the input data are accurate, the total numerical error primarily

consists of two components, namely, truncation and roundoff errors. Any
effort to minimise the total error should, therefore, be concentrated on
the ways to reduce these two types of errors. The steps may include:

1. increasing the significant figures of the computer
2. minimising the number of arithmetic operations
3. avoiding subtractive cancellations
4. choosing proper initial parameters
In many iterative processes such as numerical integration, it is possi-

ble to minimise the truncation error by decreasing the step size. But this
would necessarily increase the number of iterations and thereby, arith-
metic operations. This would certainly increase the roundoff error. This
phenomenon is illustrated in Fig. 4,4. We must, therefore, judiciously
choose a step size that would minimise the sum of these errors,

Total error

Truncation error

Errorl

-

Roundott error

Step are

Fig. 4.4 Dependence of error on step size

]PITFALLS AND PRECAUTIONS

We have seen that the floating point arithmetic system is full of pitfalls
such as conversion, roundoff, overflow and underflow errors. In many
cases, we may have to consider some precaution techniques to get the

Approximations and Errors in Computing

most accurate results. The type of precaution techniques that might be
used depends both on the computer hardware and the nature of the
mathematical models. Here are some hints that might help improve the
accuracy of the results.

1. Rearrange the formula so that you can avoid subtraction of two
nearly equal numbers. For example,

X2 -y2

x - y

can he replaced by
X +y

when x and y are nearly equal.
2. If necessary, use double precision for floating point calculations.

This would improve the accuracy considerably but would take more
execution time and computer memory space.

3. Rearrange your formula to reduce the number of arithmetic opera-
tions. An example is evaluation of a polynomial. The polynomial

+	 + ... + a0

may be rearranged as
+ a1)x + aIx .,. + cm0)

This requires much less arithmetic operations.
4. When finding the sum of set of numbers, arrange the set so that

they are in the ascending order of absolute value. That is, when
a	 b	 c , then (c - b) + a is better than (a - b) + c.

. Wherever possible, rearrange your formula so that you use the
original data rather than derived data.

6. Do not test a floating point number for zero in your algorithm.
7. Wherever possible, use integer arithmetic to avoid conversion and

roundoff errors.
8. Avoid multiplication of large numbers that may lead to overflow.
9. Use alternative arithmetic such as interval arithmetic, if necessary.

SUMMARY

In this chapter, we studied various types of errors and how they can
affect numerical calculations. We considered, in particular, the following:

• concept of significant digits and its relation to accuracy and preci-
sion of numbers

• inherent errors that are present in input data
• procedural errors introduced during the process of computing
• modelling errors that arise due to certain simplifying assumptions

in the formulation of mathematical models
• importance of absolute and relative errors and their relation to the

machine epsilon

Q Numerical Methods

• propagation of errors during computing and how it affects the result
• causes of numerical instability and how to overcome instability

problems
• convergence of iterative processes
• estimation of errors and some steps that might help to reduce the

final error

Key Terms

Absolute error
Accuracy
Algorithm
Asymptotic con vorgence factor
Backward error analysis
Blunder
Chopping
Condition number
Conditioning
Convergence
Conversion error
Data error
Discretisation error
Drag coefficient
Empirical error
Error propagation
Experiinentai error analysis
Forward error analysis
Human error
111-conditioned problem
Induced errors
induced instability
Inherent error
Inherently unstable

Input error
Machine epsilon
Mean-value theorem
Modelling error
Numerical error
Numerical instability
Numerically unstable
Order of convergence
Perturbations
Precision
Procedural error
Rate of convergence
Relative error
Representation error
Rounding
Roundoff error
Sensitivity analysis
Significant digits
Stability
Subtractive cancellation
Symmetric rounding
Triangle mc qilably
Truncating
Truncation error

1. Why is the stud y of errors important to a computational scientist?
2. Explain the concept of significant digits.
3. Describe the relationship between significant digits and the follow-

ing:
(a) round-off errors
(h) accuracy
(C) precision

What are inherent errors? how do the y arise?
r Distinguish between roundoff errors and truncation errors.
6. What is chopping? When does it occur?

Approximations and Errors in Computing 21

7. What is symmetric round-off? Show that the symmetric error is, at
worst, one-half the chopping error.
How does a truncation error occur? Give two examples.

9. How do mathematical models contribute to errors in numerical
computing?
What are blunders? how can we minimize them?

1. What do you mean by relative error? 1-low is it important in error
analysis?

12. What is machine epsilon? How is it related to significant digits?
13. State and explain triangular inequality as applied to error propa-

gation.
14. What is subtractive cancellation? How does its presence affect the

result of a computation?
15. Define condition number. What is its significance to numerical com-

puting?
16. What is range reduction technique? Give an example of its applica-

tion.
17. How will you decide the convergence of an iterative process?

18. Explain briefly the three approaches used in error analysis.
19. In an iterative process, how does step size affect the total error?
20. Enumerate a few precautionary steps that might help improve the

accuracy of numerical computing.

Find the accuracy and precision of the following numbers:
(a) 12.345	 (d) 750
(b) 0.0002932	 (e) 750.5
(c) 0.0029320	 (0 -68.3705

Add the decimal numbers 0.4 and 0.65 in binary form using 6
binary digits and then estimate the error in the sum. Show that the
error can be reduced by using more binary digits to represent the
numbers.	 -
Find the round-off error in the results of the following arithmetic
operations, using four digit mantissa.

(a) ¼ 27.65 + 22.20
(b) 87.26 + 31.42
(c) 1250.0 x 40.0

(d) 3543.0 x 16.78
(e) 25.68 + 6.567
(f) 456.7 - 1,531
(g) 456.7 - 4.566

Calculate absolute and relative errors in the arithmetic operations
in Exercise 3.

1,

2.

Numerical Methods

5. Estimate the relative error of the final result in evaluation of
(a) w 1 =(x+y)z and
(b) w2=x2+y/z

Given that x = 1.2, y 25.6 and z = 4.5.
6. Find the absolute and relative errors in evaluating the following

expressions:

(a) +2

(b) x
Assume x = 1.25 and = 2.16.

7. Find out which procedure (pj or P7) produces better results:
(a) Pi x(x + 2),	 p2 x	 2x
(b)p1=x+1x+2)	 p2 =x(x+3)+2

8. Determine the condition of the following functions:
(a) fix) = sin(x)
(b) fix)= 110 - -x)
(C) fix) =
(d) fix) = x3

). Rearrange the following expression to avoid loss of accuracy due to
subtractive cancellation:

(a) cos x sin x for x close to 450

(b) ,JI -t- X - J1 Ix for small x
(c) 1- cosx for small

(d) /Tj x for large x
(e) 1nx + 1) - ln(x) for large x

10. Estimate the maximum en-or in evaluating the expression
- 2.5x2 3.lx - 1.5 at x - 1.25

flA

FORTRAN 77 Overview

NEED AND SCOPE

After a sound algorithm and a detailed flow chart comes the develop-
ment of computer program, known as coding, Codes are written in a
high-level computer language. Hundreds of high-level languages have
been developed during the last four decades. Among these, a few have
direct relevance to numerical computing. They include, among others,
BASIC, FORTRAN, C, and C++.

FORTRAN, which stands for FORmula TRANslation, was the earliest
scientific language developed in the 1950s. Since it was specially designed
for mathematical computations, it has been the most widely used language
for scientific and engineering applications. It is well suited for
implementing the numerical methods discussed in this book. In spite of
development of numerous other languages, FORTRAN continues to pay
a dominant role in engineering applications. Consequentl y , we are go4ng
to use FORTRAN for developing programs for implementing our
algorithms. Our programs and algorithms are concise and general enough
to he used as the basics for developing programs in other languages, if
necessary.

A complete description of FORTRAN 77 is beyond the scope of this
book. We only give here an overview of the language. However, enough
material has been included so that the reader can easily understand the
programs given in the hook and also modif and implement them
effectively. Wherever necessary, FORTRAN 90 features are also included.

A SAMPLE PROGRAM

For solving any problem in FORTRAN, we have to write a sequence of
instructions using certain statements known as FORTRAN statements.

24 Numerical Methods

These instructions are required by the computer to perform the follow-
ing tasks;

1. get data into the computer memory
2. perform arithmetic and logical operations on data
3. provide results on an output media

Program 5.1
* -- -	 *

PROGRAM SAMPLE
* --- ---------------------- 	 ------------------------*
Main program

*	 A program to evaluate a function at different 	 *
points

* --- *

* Functions invoked	 *
*	 NL	 *
* -- ---

-k

Subroutines used	 *
*	 NIL	 *
* -----------	 -	 ------- -	 *
* Variables used	 *
*	 X - Independent variable	 *
*	 F -. Function value	 *

* COUNT - Counter Lu S Lore niwrnber: of evaluations	 *
* -- 	 *

* Constants used
*	 N - Number of tunctor.

REAL X, F

INTEGER COUNT, N

PARAMETER(N = 5
WRITE(* , *i'Input value of X'
READ(*, * X
WRITE(-, *)	 OUTPUT OF S7FPI,F PROGRiM'
WRITE(* , *)	 F
COUNT	 0	 -

0L	 E	 X * X

WRT'TE(*, *) X. V

X - x + x
COUNT	 COUNT

IF(COUNT .LT. N) GO TO 100
STOP

END	 -
* - - ----------------------------------- *

FORTRAN 77 Overview

A sample FORTRAN 77 program to evaluate the function fix) = x 2 for a
values of x is shown in Program 5.1. When we run this program, it
displays first the following message:

TrIULLL 0iiue o	 X

and then waits for the input from the keyboard. Let us enter a real
value, say 1.0 and then press the RemaN key. Execution now continues
and produces the following output on the screen:

	

Inpuo Vcl	 cf
I.0

OUTPUT OF SAMPlE [ROURAM

X	 F

	

1.0000000	 1.0000000

	2.000000 c	4.0000000

	

1.0000000	 16.0000000

	

8.0000000	 64.0000000

	

0000000	 255.

	

SLc'p 	 Prnn:cr:,	 I-'

Program 5.1 illustrates some of the FORTRAN statements and the overall
format of a FORTRAN 77 program. This program is intended to give
only an overview of a FORTRAN program. The details of FORTRAN
features will be discussed in the sections to follow.

The first line of Program 5.1 is a FORTRAN statement known as
program unit header or program sta/ernerit. This statement is not essential
in all systems. You must consult the system manual before using it.

is a recommended style in- FORTRAN

The lines starting with ' or C in the first column are known as comment
lines (only c in the FORTRAN IV version). These lines are used to insert
explanatory remarks to help readers to understand the program. They
are not instructions to the computer and, therefore, they are ignored by
the compiler. Comment lines should be used liberally to explain various
aspects within the program.

FORTRAN 90 permits the use of the character
the first column to mark a comment line. This can
also be used as an in-line connnent.

The next two lines
REAL X, F

INTEGER COUNT N

declare the types of storage associated with the variables. That is, the
variables x and r are declared as type real and COUNT and N as type
integer. These statements are called type declaration statements.

Fan FORTRAN 90, they are written as RRA
d IN'1o:GuR:; COUNT, N.

2 Numeccil Methods

The identifier N represents the number of points at which the function
is evaluated. The value of N is going to be constant throughout the
program execution. Such identifiers are known as symbolic constants or
named constants. Symbolic constants may be given values using a PA-
RAMETER statement. (Some version of FORTRAN 77 may not include
the feature of PARAMETER statement), The value of a symbolic con-
stant cannot be changed during execution.

Some variables need to be given initial values like

COUNT = 0
before they are used in any expression. The process of setting variables
to initial values is known as initialisation.

The set of statements
PR-INT , '-'nput Value of X'

IF (COUNT ,LT. N) GOTO 100

is known as processing block. It includes all executable statements such
as input/output statements (READ, WRITE), assignment statements and
control statements (such as i'). Note that the value of x 2 is evaluated

and assigned to the variable F in this block. Similarly, the variables

COUNT and x are incremented in this block. The statement

IF (COUNT .LT. N) GOTO 100

is known as a control statement,
This statement is responsible for creating a loop of operations and

thereby making the function evaluated exactly N times. This is done
with the help of the variable COUNT, usually known as a counter, which
keeps counting the number of tunes the function has been evaluated.

Note that the statement
GOTO '.00

directs the control to the statement
100 F = X	 X

The number 100 is known as statement number or statement label. We
need to use labels only to those statements to which the control is
transferred from another part of the same program.

The last statement in our sample program is the END statement. This
statement (which is a must in every FORTRAN program) serves two
purposes:

I. it marks the end of source code during compilation
2. it terminates theexecution of the program

In earlier versions of FORTRAN, we need to use two
statements

STOP - to stop the execution of the program
END - to mark the physical end of the program.]

FORTRAN 77 Overview 27

r

iTRAN 90 implements the same as follows:
END PROGRAM SAMPLE

Note the structure of the sample program. A FORTRAN program
generally consists of a series of blocks of code in the following order:

Program name
Program description
Variable declaration
Initialisation of symbolic constants
Initialisation of variables
Executable statements
The EE'IO statement

FORTRAN requires certain coding formats to be followed. Table 5.1 lists
them.

Table 5.1 FORTRAN 77 line format

Columns	 Use

For typing the comment character.

	

1 -5	 For typing statement number.
6	 For typing a non-zero FORTRAN character to indicate

that the previous statement is continued.

	

7 - 72	 For typing FORTRAN statement. The statement can
begin anywhere in the region.

	

73 - 80	 Not used (or used for typing line number).

FORTRAN supports the following major programming elements that
have direct relevance to numerical computing discussed in this book.

1. constants
2. variables
3. input-output instructions
4. computational instructions
5. control instructions
6. documentation remarks
7. subprograms

The sample program has illustrated the use of all the first six elements.
We shall discuss further details about them as well as the last element
in this chapter.

FORTRAN CONSTANTS

Constants are the means by which numbers and characters are
represented in a program. They are quantities that do not change.
FORTRAN supports the following five built-in data types:

1. Integer type
2. Real type

. Complex type

91 Numerical Methods

4. Logical type
5. Character type
Integer constants are numbers that do not contain decimal points (i.e.

whole numbers). They can be positive, negative or zero. For examples
25	 -10	 0	 +123

Real constants are numbers containing decimal points. They may be
expressed in positional form or exponential form. Examples:

12. 5 	-1.756	 0.0	 S.	 (Positional form)
.23 +09	 l53	 -2.35 -5 (Exponential form)

The exponential form (also known as scientific form or floating point
form) is used where very large or very small numbers are to be written
but not all digits need to be represented. (Number of significant digits
depends on the computer.)

Complex constants are ordered pairs of real numbers, separated by
commas and enclosed in parentheses, like (a, h). Examples:

(3 .0, 4.0)	 (-1.0, 0.92E2)	 (1.2 E-2, 4.1 El)

The first number is called the real part and the second is called the
Imaginary part of the complex number. (Complex numbers are usually
written in a +jb notation in mathematics.)

Logical constants are data that are used to represent the two truth
values "true" and "false". Therefore, there are only two logical constants
which are written as

.-RUE.

FALSE.

Character constants represent a string of characters enclosed in apos-
trophes (single-quotes). Examples:

'John'	 'January 26'	 'NEW DELHI 20'	 '123'

In-	 [FORTRAN 90, we may also use double quotes.

FORTRAN VARIABLES

Variables represent quantities that can change in value. In FORTRAN,
they indicate storage locations where the values are stored. These values
can be changed whenever required.

A variable name may consist of one to six characters, chosen from the
letters A through Z and 0 through 9, the first of which must be a letter.
Examples:

ALPHA	 Xl	 SLiM	 NAME

FORTRAN 90 permits names with a length of
characters and also allows the use of underscore character.

FORTRAN 77 Overview 22

We can have longer names in FORTRAN 90. Examples:

DISTANCE —TRAVELLED AVERACE_UEIGHT

LThis facilitates to create more meaningful names.

All variables must be declared for their storage types corresponding
to the five data types discussed in section 53, namely, integer, real,
complex, logical and character. Examples:

REAL NUMBER, SUM, Xi
INTEGER 'F O'I'Ar, COUNT, Y
COMPLEX ROOT1, Z
LOGICAL PACKED, L
CHARACTER * 20 RAMP, C:FY

The variables NAME and CiTY can hold up to 20 characters. We can also
increase the number of significant digits held in a real type variable by
declaring it a "double precision" variable as follows:

DOUBLE PRECISION SUN, Xi

Declaring a variable creates astorage location of
appropriate type but it does not store any initial value, it
contains some unknown bit pattern stored previously, i.e.
the variable contains garbage.

Any variable that is not declared explicitly for its type assumes default
(implicit) type as follows:

J"James beginning with	 Type
Any letter I through N	 integerL	 Any other letter	 Real

SUBSCRIPTED VARIABLES

FORTRAN variables can have subscripts to store a set of related values
in one-dimensional vector or multidimensional matrices. A subscripted
variable is called an array.

An array can he used to represent a collection of data of the same type
and the subscripts can be used to access the individual data items. For
instance, the third element of a one-dimensional array X is given by
X3). Examples of array variables are:

CiTY5;'	 GRADE (I

We can use integer variables to represent subscripts and by assigning a
suitable value to the subscript variables, we can access the desired
element of the array.

All array variables must be declared for their type and size. Example:

10 Numerical Methods

REAl	 Xl)i)(

or
REAL X(1:lO)

Both these statements declare X as a one-dimensional array with elements
numbered 1 to 10, which are of type real. The second form specifies the
lower and upper bound of the subscript. In this form, the value of either
bound may be positive, negative, or zero. The value of the upper bound
should be greater than the value of the lower hound. Examples:

INTEGER	 X(0:5)	 M(-10:20)	 N) 5:0)

REAL	 P 5, 51	 ."isLL3	 3 3 5)

The second line declares P and VALUE as real Lype, two-dimensional
arrays.

We may also declare type and size in separate statements like

REAL X, N

DIMENSION X(10i	 MID; 10,10, 0:C0(

Character arrays are declared as follows:

CHARACTER * 30 NAME(4C)

or
CHARACTER	 3D 53111: 10)

where the number 30 specifies the maximum number of characters to be
stored in an array element.

In FORTRAN 90 arrays may he declared as follows:
REAL, DIMENSION (1: 9) : :5,1'

CTIAR.CTER(LEN = 3D), DTMLNSIION(1;4C•) ; : NAME

LOGICAL)-5:5) : : :-DCJND

(7HARACTER, DIMENSION) 1 0)	 : CITY * 20

INPUT/OUTPUT STATEMENTS

lnputi'output statements are data transfer statements that are required
in every program. FORTRAN supports two kinds of I/O statements

1. list-directed 110 statements
2. format directed 110 statements

We have already seen (in sample program 5.1) the use of list directed 1/0
statements. They are

READ , X

PEINi' *	 F

The general form of these statements are:

	

TREAD *	 v	 v2	 •VrI -
PR I NT 	 v,-. ,

where v 1 , V2.....v, are data items. READ * reads input data from the
standard input device, usually the keyboard, and assigns them to the

FORTRAN 77 Overview IQJ.
variables in the list. PRINT * outputs the values of data items in the list
on the standard output device, usually the screen. The data items v

1 , v27v should be valid variables in ease of READ and may be variables or
constants in case of PR I N'). Examples

READ *, A, B, COUNT

PRINT , X, 'TOTAL', SUM, 40.7

READ * is usually used to provide input data interactively through the
keyboard. The data should be entered with either a comma or one or
more spaces between the items.

Format directed 110 statements are used when the data should be
read or written using a specified format. The general form of format
directed 110 statements are

READ (n., n2) v, v.....,
MRI'i'E(n1, n2) v, V2 Vn

where n 1 is the number assigned to the device giving input or receiving
output and [2, is the number of the FORMAT statement which specifics
the format of input data or output values. The FORMAT statement (a
non-executable statement) takes the following form:

n2 FORMAT (list of specifications separated by commas)
Examples:

REAT(5, 1 0() X, Y	 (Reads values from unit 5)W}1i'[6, 200) x, y , SO4	 (Writes values to unit 6)
The unit may refer to keyboard, screen, printer, disk drive, and so on. If
we are using only the standard devices as specified by the computer
system, then we can use the following forms:

READ,'*, :100) x, y
200) X, Y, SUM

The FORMAT statements may look like
100	 POr<i'')15,	 r'o .2)
200 FORMAT ('10, F7.2 1 F10.2)

The letter i indicates that the number to be handled is integer and
F

indicates that the number is floating point type. For more details about
format Specifications you must consult the manual.

We may also give initial values to variables using the DATA state-
ment as follows:

DATA V y / 25, 7.2

This statement assigns 25 to X and 7.25 to Y.

COMPUTATIONS

FORTRAN was specially designed to evaluate complex mathematical

IN Numerical Methods

expressions. We can write a FORTRAN expression for a given
mathematical expression and assign it to a variable using an assigimient
statement as follows:

[exesn
This statement directs the computer to replace the previous value of the
variable on the left-hand side of the equals sign with the result of the
expression on the right. The expressions are written using variables,
constants and arithmetic operators (see examples shown in Table 5.2).

Table 5.2 FORTRAN expressions

Algebraic expression	 FORTRAN expression

ax	 A = X	 YJZ -	
** 2

B	 (X t y) 1z,	 R * T
z

c = y) (z + 2)	 C). *	 * (2 4 2.0)

The following are the accepted arithmetic operators in FOR'PRAi".
+ Addition
- Subtraction or Unary minus
/ Division
* Multiplication
** Exponentation
According to the precedence rule
1. all exponents are performed first, all multiplications and divisions

next, and all additions and subtractions last,
2. for the same precedence, the operations are performed from left to

right, and
3. when parentheses are used, the expressions are evaluated from

innermost to outermost parentheses (using the same precedence
rule each time)

In numerical computations, we often come across an assignment
statement of the type

SUI	 SUM -. N

This means, replace the "old value" of CUM by the "new value".

Mixed-Mode Expressions
It is possible to combine integer, real and double precision quantities
using these arithmetic operations. Expressions involving different types
of numeric operands are called mixed-nwde expressions and are evaluated

as shown in Table 5.3.

FORTRAN 77 Overview 103

Table 5.3 Mixed-Mode Evaluation
Mixed -mode expression	 Evaluation	 Result
integer op real	 Convert the integer to the corre- Real

sponding real value and evaluate the
expression.
Convert the integer to the corre-
sponding double precision value and
evaluate the expression.
Extend the real to a double precision
value (by adding zeros) and evaluate
the expression.

integer op double
precision

real op double
precision

Double precision

Double precision

CONTROL OF EXECUTION

Control of execution means the transfer of execution from one point to
another in the same program, depending on the conditions of certain
variables. This may involve a firward jump thus skipping a block of
statements, or a backward jump thus repeating the execution of a block
of statements. This is known as conditional execution of statements
Examples of such conditional execution are:

1. If the value is negative, skip the following four statements.
2. If the item is the last one, go to the end.
3. Execute the following ten lines 100 times.
4. Evaluate the following statement until a given condition is satis-

fied.
FORTRAN contains two central Structures which could he used to
implement such conditional xecution of statements. They are

1. IF-ELSE Structwe
2. DO-WHILE structure

Brock IF-ELSE Structure
The block IF-ELSE structure (also known as selection structure) consists
of a logical expression that tests for a condition or a relation followed by
two alternative paths for the execution to follow. Depending on the test
results, one of the paths is executed and the other is skipped. This is

Enter	 Enter
1ru	 False	 True	 False

Bloc k Rock I

r	
-

Continue	 Continue

	

(a) Statements in both paths	 (b) Statement in only one path

Fig. 5.1 Flow chart of (F-ELSE structure

EM Numerical Methods

illustrated in Fig. 5.1.
The FORTRAN statement to code a block IF-ELSE structure takes the
form:

IF (logical expression) THEN--1--
statement-block 1	 IF block

ELSE	 -.1--f--
statement-block 2	 j	 ELSE block

END IF

The statement blocks may contain zero or more statements. If the logical
expression is true, the program executes statement-block 1 and then
goes to the statement next to the END IF statement; if the logical
expression is false, the program executes statement-block 2 (skipping
statement-block 1) and then gdès to the statement next to the END IF,

Relational Expressions
Relational expressions are meant for comparing the values of two
arithmetic expressions and have logical values . TRUE. or FALSE. as
results Arithmetic expressions may contain single variable, simple
constant, intrinsic function, or a complex expression. In numerical
computing, we often wa our programs to test for certain relationships
and make decisions based on the outcomes. We may use the relational
operators given in Table 5.4 for comparing the expressions.

Table 5.4 Relational operators

Operator	 Meaning

.LT.	 Less than

.LE.	 Less than or equal to
EQ.	 Equal to
NE.	 Not equal to
.GT.	 Greater than
GE.	 Greater than or equal to

Examples of rational operators are
1. IF(X .LT, Y) THEN

PRINT * 'Small is', X

ELSE
PRINT * Small is a , y

END IF

2. IF(TOTAL .GT. 1000) THEN

TAX	 0.15 * TOTAL

ELSE

TAX = 0.10 * TOTAL

END IF

PRINT * 'GRAND-TOTAL = ', TOTAL + TAX

FORTRAN 77 Overview 1Q

3. IF(C - a GE. A - B) THEN

X	 C - D

ELSE

X= A- B

END IF

When arithmetic expressions are used along with
the relational operators, arithmetic expressions are
evaluated first and then the results are compared.

Logical Expressions
In some cases, we may need to make more than one comparison. It is
possible to combine two relational expressions using the following logical
operators:

Both relations are true
OR.	 One or both of the relations are true
ROT.	 Opposite is true

Such expressions are known as logical expressions.
Examples of logical expressions are:

1. IF(StJM .GT. 100 .OR. N .GT. 20) THEN

ELSE

END IF

2, 1F (AGE .LT. 30 .AND. DEGREE .EQ. 'ME') THEN

ETS F

END IF

FORTRAN permits nesting of IF-ELSE blocks. That is, we can place
an IF-THEN-ELSE code within an IF block or ELSE block.

Warning!
Be careful when comparing real values. They are never
exact!

We may also use the following relational operators in
FORTRAN 90.

<z Less than
<= Less than or equal to

= = Equal to

J.Q4 Numerical Methods

1= Not equal to
>= Greater than or equal to
> Greater than

DO-WHILE Structure

The DO-WHILE structure (also known as looping structure) performs a

set of operations repeatedly while a certain condition is true. When the
condition is not true, the repetition ceases. This kind of structure is
implemented in FORTRAN by the DO statement. The general format of
DO statement is:

O fl	 C, e2, C7

Body of the loop

n CONTINUE

where

ii	 number of the last statement in the loop
loop control variable

e l 	initial value of the control variable
e 1	final value of the control variable

increment value.
The control variable i may be a real or integer variable. The parame-

ters e, C 2 , and e may be real or integer variables (or expressions or
constants).

The default value of e is 1. The logic of DO loop is as follows:
1. initialise the loop control variable to the initial value e
2. test to see if the value of loop control variable is less than or equal

to the final value e 2 . If it is true, continue the loop; otherwise exit
the loop

3. execute the body of the loop
4. increment the loop control variable by a3
5. go back to step 2 (beginning of the loop)
This can be written in pseudocode form as follows:

i. = e1
DO WHILE I <= e2

exocuLe st..Lements
i. = I

END DO
Figure 5.2 shows a flow chart showing the execution of the DO struc-

ture. The number of times the loop is executed (unless terminated by an
EXIT statement) is given by the formula

^e 2 -C1 +C3
rnr=

[x] denotes the greatest integer less than or equal to .

FORTRAN 77 Overview 107

Enter

	

L 	 Loop
ii

L

r4H	 :,

Examples of 1)0 loop are

DO I: P =	 y ,	 2 L

10 C':1;1DE

DO 20 I	 4, ID, 0.25

2QCON- IOI[

DO 30 N	 2, 70

30 COID:LJDL

4 .	 DO 1 .'j	 -- 1	 110

IF 	 (E;':ii trorn :he	 ocrO
40 OONJ1Niji
50

VlTarnrng !
Avoid the use of real v;ii-rab]es for DO loop parameters. The
cause i-ouricloff errors and, thei-elhre, cannot alwa ys guarantee
the correct numl)er of loop executions.

A DO loop can contain DO ioops within its range. This is Icriown as
nosIinj. When nesting D) loops, the inner loop must be entirely contained
within the range of the outer loop.

10 Numerical Methods

Examples of nesting DO loops are

1.	 DO 250 T:]	 10	 cYJt].OQp

DO 100 CT = 1,
PRINT *,	 * jinnr lOSS

100	 CONTINUE -____ 7z-
200 CONTINUE

2	 LX) 500 1 - 1	 10
DO 200 J = 1 1 10 ---	 outer loop

200	 CONTiNUE

inner loops

DC) 300 K	 1 5 -

300	 CONTINUE

500 CONTiNUE

The general firm of DO structure in FORTRAN 90 is:

DO loop control

L
END

block of statements
 DO

This is implemented in two forms:
Form 1

DO 1	 0, o, e,

EN[) DO
Form 2
1.	 DO

IF (.1 EXIT -

END DO	 Leave the loop

2,	 00

Go to the beginning
ii	 -) CYCLE

EM DO

FORTRAN 77 Overview 12

SUBPROGRAMS

One of the features of any modern programming language is the provision
for subprograms. A subprogram is a separate program unit that can be
called into operation by other programs. Subprograms are heavily used
in numerical computing for tasks such as evaluation of a function, matrix
multiplication, sorting, reading a table of values, printing a report, etc.

The concept of' subprograms allows us to break a complex problem
into subtaska so that we may develop subprograms and later integrate
them into a single program known as driver or main program. These
subprograms can be independently designed, coded, and tested.
Subprograms are usually called modules and the programming approach
'ising modules is called modular programming.

FORTRAN supports two kinds of subprograms, namely, functions and
subroutines. A function subprogram returns a single value to the calling
program while a subroutine subprogram can compute and return several
values.

Function Subprograms
A function subprogram (or simply a function) is an independent program
unit written to compute and return a single value. It takes the following
form:

FJI
Declaration of argument types

-j--- Execution statements

- expcss ion

L END

where pe specifies the type of the function value that is being returned
and aqurnenjL-3 are dummy variables that must be declared for their
type inside the function. They may var y in number from zero to many.
There should heat least one statement of the form

-- oxors011

which assigns a value of appropriate type to the function name, which is
in turn returned to the calling program.

A function can be called as follows:

1:men ::
When the function is called, the values of the arguments in the calling
statement are assigned to the corresponding arguments in the function
header. The arguments, therefore, must agree in order, number and
t ype. An argument may b.,, a variable name, an array name, or a
subprogram name. Example:

]jQ Numerical Methods

PROGRAM MAIN
REAL A, B, R, MUL ---	 MIXL declared in main

READ	 A, B

R = MIJL(A, B)	 - Calling MIJL

PRINT * , R

END -
REAL FUNCTION M(JL(X, Y) ---- MIlL defined

REAL X, 'I

NTJL	 X * y

RETURN

END

When an array is passed as an argument, then its corresponding dummy
argument should be an array variable and its size must be declared
properly. Note that a function may be called and used in an expression,
like any other variable. Example:

R = A * MUL (A, B)

Subroutine Subprogram
A subroutine, unlike a function which always returns only one value,
can return many values (or no values). Therefore, we use a subroutine
when either several values are to be computed and returned or no values
are to he returned (such as printing the values of some variables). The
general structure of a subroutine is:

SUBROUTINE n-rne (srg!lmofl(S)
Declaration of arguments

----	 Execution statements

RETURN
END
	 I

where name is the subroutine name and arguments are dummy variables

that must be declared for their type. When subroutine has no arguments,
the parentheses are omitted (note that in case of function, parentheses
are necessary even if there are no arguments). The outputs of subroutine
are returned to the calling program by means of the arguments.

A subroutine can be invoked using the CALL statement as follows:

CALL name (arguments)
or

CALL name
The actual arguments in the calling statement must agree in a one-to-
one manner with the order and type of the arguments in the subroutine.

Example:

FORTRAN 77 Overview 11.1

PROGRAN MAIN
REAL A, B, R
READ * , A , B
CALL MtJL (A, B, R)
PRINT *,R I
END

y
SUBROUTINE MIJL(x, Y, XY)
REAL X, Y, XY
xY = x * y
RETURN
END

The calling program assigns the values of A and B to the variables x
and Y in the subroutine which in turn assigns the value of x (computed
in the subroutine) to the variable R. Compare this with the function
subprogram.

Note that the variables that are not passed as arguments may be
passed to the subroutine using a COMMON statement.

FORTRAN 90 greatly extends the power of function subprograms
by allowing the result to be an array or structure. Function
subprograms are designed as follows:

FUNCTION naJe(aruents) RESULT (resulE -
variable)

Declaration of arguments and result-variable

resu1t-variable = expression
END FUNCTION name

Instead of function name, the result-variabl e is assigned the value
that is to be returned to the calling function. The result-variable is
a variable name that has been placed like a function argument
with the RESULT keyword, immediately after the function name.
Both the arguments and the result-variable are declared for their
types.

Note that, in FORTRAN 90, all programs and subprograms use
the name of the program or subprogram in the END statement as
follows:

END EJNCT:CN F
END SUBROUTINE ENAP
END PROGRAM SORT

FORTRAN 90 also includes features such as optional arguments,
keyword-identified arguments and array sizes which are very
Powerful compared to FORTRAN 77. These features must be used
wherever possible.

M Numeilcol Methods

FORTRAN allows us to write out a formula for a function and define it
using the assignment statement inside the program itself (instead of
using an "external" function subprogram). Since such functions are "one-
line" functions. they are called statement functions. A statement function

is defined as follows:

L0 me (arguments) = e.xpressin1

where rxpresson is the FORTRAN expression of the formula (or function)

to be evaluated and arguments is a list of variables used in the expression.
The arguments are simple integer or real variables. Examples-

AREA (R)	 = 3.41G 1 R * R

VALUS: U', F-)	 = P	 1.0	 R) ** N

POLY U',	 N, N) -x	 N + y **

A variable which appears in the expression but is not defined as an
argument is called the parameter of the function. Values of such variables
should be defined before using the function.

The function can be used in any subsequent lines of the program by
writing the name of the function with actual arguments, like

CIRCLE = AREA (X)

FVALOE	 (AI1OUN	 Tt-:rEPeFT)

POLY1	 •- f'OLY (I\, 2. B, 2)

RINC	 = AREA(XI) - ARJUX2)

Note that the functions can be used on the right side like any other
variables, The actual arguments may be variables or constants (or even
expressions). However, they must agree in number order and type with
the dummy arguments in the function definition statement.

A statement function may use other statement functions if they are
defined beibre it. Like function subprograms, the statement functions
must be declared for their type in the program and defined after all
declarations, but before the first executable statement.

, INTRINSIC FUNCTIONS

In numerical computing, we use mathematical functions like logarithm,
square root, absolute value, sine, etc., very frequently. FORTRAN supports
a library of such functions which can be invoked in our programs. Since
these functions are part of FORTRAN, they are also called intrinsic or

built-in functions. An intrinsic function can be invoked by simply typing
the name of the function followed by the arguments enclosed in
parentheses. Example:

ASS (X)	 COS (TFlE'i'A)	 SQRT(X * X	 y *

The most commonly used intrinsic mathematical functions are
summarised in Table 5.5. When using any of these functions, it is a good
practice to declare them using the INTRINSIC statement in the
declaration section.

FORTRAN 77 OvervLw jJ

Table 5.5 Commonly used mathemafjcai functions
Ct ion

AFIS (x)

ACOS ix)

AS-'N)x)

ATAN(i

x.j

x

IN I

L::. I C x

MIty.,

:.;i,

S C C! (x)

.It!iI

Descriptioncription

Absolute. value

Arccosine
(result in radians)

Arcsirie
(result in radians)

Aretangent
(result in radians)

Arctangent of x1/X2

(result in radians)

Cosine
(x in radians)

Hyperbolic cosine

Conversion to double precision rca.!
Power of e

Truncation to integer

Natural logarithm
(base e)

Common logarithm
(base 10)

Maximum value

Minimum value

Remainder of division x. x,
(e.g. MOD5.3) is 2)

Conversion to nearest, interer
Conversion to sing l e-precision real
Sine
1 A in radians

Hyperbolic sine

Square root
0.1)

Tangent
(x in radians

lIoerhoIj<- IMfljCflI

ThPH. DEBUGGING, TESTINGOIQpJ
......................................cuco•	 C pirii;	 .fir . . ciruis hefro e it is used. Errors in ompl)1)r code are cofled bugsl)I 	 0 00)) ectjn. them 1 Culled Lbb,;0

o mu' hi ranrnatcn(I	 hu max' prodi;	 vrong
.................times, a program ma p:'i ore cwie i results 1' 	 e sot ofda. ui] 0 ng results fu- inothcr set. Sllcj l errors are due	 roper

fl4 Numerical Methods

program logic and are therefore known as logic errors or run-time errors.
It is a good practice to test the program for all possible range and
combination of data.

Documentation is a most important but often neglected activity by the
programmers. Documentation provides all details about the program
intent, its variables and other requirements that allow the users to
immediately understand and implement the program more easily.

Documentation includes two parts -- internal documentation and ex-
ternal documentation. Internal documentation means the use of explan-
atory remarks throughout the program, which describe how various parts
of the program work. This is very important from the maintenance point

of view.
External documentation includes instructions to the users on how to

implement the program and what actions should be taken in certain
special circumstances. Such a document is called user manual.

SUMMARY

We presented an overview of FORTRAN 77 in this Chapter

briefly the following features that are frequently used
numerical computing software:

a various categories of data types used to represent

We discussed
a developing

numbers and

characters
• rules of defining variable names m id creating storage space for

them
• creation and use of subscripted variables to represent tables of data
• inpuUoutpUt statements required to read data values and print

results
• operators used for evaluating mathematical and logical expressions

• control structures supported by FORTRAN 77
• design and use of subprograms in building a large application

program
We have also highlighted the FORTRAN 90 features wherever applicable.

Key Terms

Algebraic expression
Arguments
Arithmetic operators
Array
Assignment statement
Backward jump
Bugs
Built-in functions
Calling program
Calling statement

Logic errors
Logical constants
Logical expression
Logical operators
Logical type
Looping structure
Main program
Mixed-mode OXj 5SiOr?
Modular programming
Modules

(Cofltd,)

FORTRAN 77 Overvaw !j

(Contd.)
Character constants
Character type
Comment line
Complex constants
Complex type
Conditional execution
Constants
Control statement
Control variable
Counter
Debugging
Dimension
DO loop
DO.. WHILE structure
Documentation
Double precision
Driver program
Dummy variables
Executable statement
Exponential form
Expressions
Flow chart
Format-directed I/O statement
FORTRAN expression
Forward jump
Functions
IF.. ELSE structure
Initialisation
Inner loop
Input statement
Integer constants
Integer type
Intrinsic functions
List-directed I/O statement

Multidimensional array
Named constant
Nesting
Nun-executable statement
One-rJime,,sjona) array
Operators
Outer loop
Output statement
Parameter statement
Positional form
Precedence rule
Processing block
Program statement
Program unit header
Real constants
Real type
Relational operators
Hun-time errors
Size
Statement functions
Slaternein label
Statement number
Subprogram
Subroutine
Subscripted variable
Subscripts
Symbolic constant
Testing
Two-dimensional array
Type declaration
User manual
Variable declaration
Variables

I. What are FORTRAN constants?
2. What are logical constants? Where are they used?
3. When do we use the exponential form to represent real numbers?
4. What are variables? State the rules of naming variables?
5. What is an array? When do we use arrays in computing?
6 What is meant by declaration of variables? How are array variables

declared in FORTRAN?
7. Describe the actions of the following statements:

(a) READ *
(b) PRINT *

fl Numerical Methods

(c) READ (, 100)
(d) WRITE (, 200)
(e) WRITE (6, 200)
I) WRITE (*

8. What is the function of a FORMAT statement? Give an example.
9. How are DATA statements used to provide values to variables?

10. State the hierarchy of operations followed by FORTRAN in
evaluating expressions.

11. List FORTRAN statements that are used to implement conditional
execution statements. How are they different in terms of
implementation?

12. Give two examples of each of the following expressions:
(a) Relational expression
(h) Logical expression
(C) Mixed made expression

Is there any special caution to be exercised in writing these
expressions? Explain.

13. Why should we avoid the use of real variables as DO loop
parameters?

14. What is nesting? When do we need to use nesting in numerical
computing?

15. What are subprograms? How are they used in program development?
16. Distinguish between the function subprogram and subroutine

subprogram.
17. Wht is a statement function? How is it different from (unction

subprogram?
18. Give at least two examples of using statement finictions in numer-

ical computing?
19. What is testing? How is ii. different from dehngging?
20. Describe the importance of documentation for programmers and

program users.

REVIEWEXEPCISES

Which, of the following are illegal FORTRAN names? Why?
(a) TOTAL	 (b) PART - I
(e) % MARK	 (d) REAL
(o) A+	 (I) 3M
(g) X23	 '	 X AXIS

Classify each cf	 .	 a'.	 jj integer	 or a
real constant. L 	 ilcnner, iate te reasons.

(a) 123	 th	 23	 (c) '123'

dl 12 + 3 	 ti 4-12

g	 l2 .'.	 .	 it 101JR
$1; 5	 ,. :.)2E:l	 'I) —I.5E02

o 25.t•-

FORTRAN 77 Overview

3. Which of the following are legal character constants?
(a) 'A'	 (b) TOTAL'
(c) '1.23'	 (d) 'TOTA MARKS'
(e) 'NEWTON'S LAW'	 (f) A.B.RAM'

4. Write the FORTRAN expressions for the following:

(a) ----x --	 (c) —_-6 (clC) (axd) 2cd f	 C

(h) ax2y+hxy2+c	 (d) ic+'ln_1
"	 y)

5. Find the values of M and A when each of the following arhJc
statements is executed.

(a) A = 2.5 + 3.0 ' 2/3.0
(b) A 2.0 ' 2 + 3.0	 2 - 4.0 3.0/2.0
(c) A=16/2**35/2*(*(_j))
(d) M(9/4)/(3/2)
(e) M 4	 2 * (2/3)

6. Identify errors in the following assignment statements:
(a) X=SUM/N
(b) A = (205(X) + FLOAT(N)
(c) N = (X/Y) (X/Z)
(d)M-1=(A+B+c),D
(e) W = X ** -2 + SQRT(N)
(1) D = P * ALOG (-3.5)

7. Following statements contain mixed mode expressions. Correct them
using

(a) the type declaration statements
(b) the type conversion functions
(c) none of the above
(1) AREA = LENGTH * WIDTH
(2) FORCE = MASS * ACCEL
(3) lIST = SQRT(N ** 2)

8. Using library functions construct FORTRAN statements for the
following:

(a) AJs(s-a)(s-b)(s_c

(b) cja2+b2_2abcos(x)

(c)
x+yI

(d) f=xc-
2ir	 2

9. Given below are three sets of expressions. The two expressions in
each set, though appear to be identical, do not produce the same
results for certain values of integer variables I, J and K and the

I 	 Numerical Methods

real variable X. Identify those values for which the two expressions
are not equal.

(a) (I+J)/K and l/K+J1K
(b * (JfK) and I IWIK
(c) X I/J	 and X (lleJ)

10. Write a program to read two values from the keyboard and 10
display their sum along with their values on the screen as follows:

(a) All the three values in one line
(b) Values one below the other in separate lines

11. Given the lengths of the two sides of a right triangle, write a
program to do the following:

(a) To read the values of two sides from the keyboard
() TO calculate the area of' the triangle (one-half the product of

two sides)
(c) To calculate the length of hypotenuse (square root of the

sums of squares of the sides) and
(d) To print the results with labels like

Area =
Hypotenuse -

12. Write a program to evaluate the expression

(x±v)2 2x 	 y
w

s for the following values of x and y:and print the result
(a) x = 0.05 and = 900
(b) - 0.005 andy = 900
(c) x - 0.002 andy 900

Are the results different?
Note that the above expression, on simplification, reduces to it , = 1.
If the results are different, why?
Declare the variables to be double precision in the above program
and see the results- Is there a difference? If so, why?
Write a program which requests the user Lo type in a number. If
the number is four digit long or longer, then the computer should
provide a message that the number is too large. If it is two digit
long or shorter, then the message should he that the number is too
small. Otherwise, print a message

WELL DONE, WE TH1K ALIKE

15. Write a program to solve the quadratic equation
ox .! + bx + c = 0

by using the formula
±

roots=
2a

13

14

The program should display the real roots or message indicating
that there are no real roots (if b 2 -- 4ec' is negative.

FORTRAN 77 Overview fl
16. Write a program to read the marks obtained by 25 students in a

class and count the number of students with marks in the following
range;

(a) 0 to 39 (Fail)
(b) 40 to 59 (Pass)
(c) 60 and above (Pass with I class)

17. Write programs to evaluate the following functions to 0.0001 per
cent accuracy.

(a) sin =x

2	 4	 6

(b) cosx =l----+--------+...
2!	 4!	 6!

18. Write a program to read a set of numbers, count them, and find
and print the largest and smallest numbers in the list and their
positions in the list.

19. Write a program to calculate and print the mean, variance, and
standard deviation of a set of N numbers.

Mean =—xL
N1=1

9

Variance 1_x2 _Lx :i'
1=1

i

Standard Deviation ,JVarjance
20. Write a program to find the largest element of a given matrix and

print out the value with location details.
21. Write a subprogram to evaluate the factorial of a number which is

given by
n ! = n(n	 -- 1) (n - 2)	 1

Using this subprogram write a main program to calculate the bino-
mial coefficient

b
(ii -r)!r!

This gives the number of combinations of n objects take r at a time.
22. Write a subroutine subprogram that will interchange the values of

two variables when called.
23. Write a menu-driven program that allows the user to use one of the

following options;
(a) To convert miles to kilometres
(b) To convert feet to metres
(c) To convert degrees Fahrenheit to degree Celsius

Note: 1 mile = 1.60935 kilometres
1 foot = 0.3048 metres
C = 519 (F - 32)

M Numerical Methods

24. Rewrite the following program so that it will take minimum time
for execution.

READ (5, 111) W, Cl, C2, C, R, V

CRT1	 W * Cl * 11.0	 G * RI *

CRT2 = W * (C2 + Cl * (1.0 + C	 R)) * V

CAP	 C2+C1*(1.0C*R)

WRITE (6, 222) CRT1, CRT2, CAP

111 FORMAT (5D10.2(

222 FORMAT (lHb, 2F10.2, 5X, F10.5)

END

25. Improve the following program segments:
1.	 READ (5, 11) X. Y

DO 50 1 = 1, i00

Al - IX	 X + V *

50 WRTTE (6, 22) A

ii FORMAT (2F5.2)

22 FORMAT (1Mb, F10.5)

STO P

END

DO 50 1	 11 50

Xl	 X	 V/B * C

X2 = Z	 V/B * C

CONT INUE

